Nanostructured electrocatalysts immobilised on electrode surfaces and organic film templates

Abstract

The development of new electrocatalysts with the aim of enhancing the rate of electrochemical reactions has been a long-term goal of electrochemists. In part, this is due to the great importance of electrocatalysts in energy generation and environmental concerns. In this review, various methods of the preparation of nanostructured electrocatalysts and their applications after attachment to the electrode surface are described. Diazonium chemistry has been extensively used for the preparation and attachment of nanostructured electrocatalysts and this review thus describes the recent developments and applications of this chemistry in electrocatalysis. The preparation of nanostructured electrocatalysts including grafted molecular films and metal nanoparticles physically adsorbed on electrode surfaces and those attached to the surface by molecular links using diazonium chemistry is reviewed. Two methods for the attachment of nanoparticles by simple physical adsorption and by electrochemical deposition on molecular films are described and the electrochemical response of nanostructured electrocatalysts for some of the most common electrochemical reactions is discussed.

This is a preview of subscription content, access via your institution.

References

  1. Allongue, P., Delamar, M., Desbat, B., Fagebaume, O., Hitmi, R., Pinson, J., & Savéant, J. M. (1997). Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. Journal of the American Chemical Society, 119, 201–207. DOI: 10.1021/ja963354s.

    CAS  Article  Google Scholar 

  2. Andrieux, C. P., Gonzalez, F., & Savéant, J. M. (1997). Derivatization of carbon surfaces by anodic oxidation of arylacetates. Electrochemical manipulation of the grafted films. Journal of the American Chemical Society, 119, 4292–4300. DOI: 10.1021/ja9636092.

    CAS  Article  Google Scholar 

  3. Barbier, B., Pinson, J., Desarmot, G., & Sanchez, M. (1990). Electrochemical bonding of amines to carbon fiber surfaces toward improved carbon-epoxy composites. Journal of Electrochemical Society, 137, 1757–1764. DOI: 10.1149/1.2086794.

    CAS  Article  Google Scholar 

  4. Baunach, T., Ivanova, V., Kolb, D. M., Boyen, H. G., Ziemann, P., Büttner, M., & Oelhafen, P. (2004). A new approach to the electrochemical metallization of organic monolayers: palladium deposition onto a 4,4’-dithiodipyridine self-assembled monolayer. Advanced Materials, 16, 2024–2028. DOI: 10.1002/adma.20040409.

    CAS  Article  Google Scholar 

  5. Bayati, M., Abad, J. M., Bridges, C. A., Rosseinsky, M. J., & Schiffrin, D. J. (2008). Size control and electrocatalytic properties of chemically synthesized platinum nanoparticles grown on functionalised HOPG. Journal of Electroanalytical Chemistry, 623, 19–28. DOI: 10.1016/j.jelechem.2008.06.011.

    CAS  Article  Google Scholar 

  6. Bélanger, D., & Pinson, J. (2011). Electrografting: a powerful method for surface modification. Chemical Society Reviews, 40, 3995–4048. DOI: 10.1039/c0cs00149j.

    Article  Google Scholar 

  7. Bernard, M. C., Chaussé, A., Cabet-Deliry, E., Chehimi, M. M., Pinson, J., Podvorica, F., & Vautrin-Ul, C. (2003). Organic layers bonded to industrial, coinage, and noble metals through electrochemical reduction of aryldiazonium salts. Chemistry of Materials, 15, 3450–3462. DOI: 10.1021/cm034167d.

    CAS  Article  Google Scholar 

  8. Brown, K. R., Walter, D. G., & Natan, M. J. (2000). Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chemistry of Materials, 12, 306–313. DOI: 10.1021/cm980065p.

    CAS  Article  Google Scholar 

  9. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two phase liquid-liquid system. Chemical Communications, 7, 801–802. DOI: 10.1039/c39940000801.

    Google Scholar 

  10. Calabrese, G. S., Buchanan, R. M., & Wrighton, M. S. (1982). Electrochemical behaviour of a surface-confined naphtoquinone derivative. Electrochemical and photoelectrochemical reduction of oxygen to hydrogen peroxide at derivatized electrodes. Journal of the American Chemical Society, 104, 5786–5788. DOI: 10.1021/ja00385a040.

    CAS  Article  Google Scholar 

  11. Corgier, B. P., Marquette, C. A., & Blum, L. J. (2005). Diazonium-protein adducts for graphite electrode microarrays modification: Direct and addressed electrochemical immobilization. Journal of the American Chemical Society, 127, 18328–18332. DOI: 10.1021/ja056946w.

    CAS  Article  Google Scholar 

  12. Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104, 293–346. DOI: 10.1021/cr030698+.

    CAS  Article  Google Scholar 

  13. Delamar, M, Hitmi, R., Pinson, J., & Saveant, J. M. (1992). Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. Journal of the American Chemical Society, 114, 5883–5884. DOI: 10.1021/ja00040a074.

    CAS  Article  Google Scholar 

  14. Downard, A. J., & Prince, M. J. (2001). Barrier properties of organic monolayers on glassy carbon electrodes. Langmuir, 17, 5581–5586. DOI: 10.1021/la010499q.

    CAS  Article  Google Scholar 

  15. Downard, A. J., Tan, E. S. Q., & Yu, S. S. C. (2006). Controlled assembly of gold nanoparticles on carbon surfaces. New Journal of Chemistry, 30, 1283–1288. DOI: 10.1039/b605219c.

    CAS  Article  Google Scholar 

  16. Frens, G. (1973). Controlled nucleation for the regulation of the particle size in monodisperse gold solutions. Nature. Physical Science, 241, 20–22. DOI: 10.1038/physci241020a0.

    CAS  Google Scholar 

  17. Gam-Derouich, S., Mohouche-Chergui, S., Truong, S., Hassen-Chehimi, D. B., & Chehimi, M. M. (2011). Design of molecularly imprinted polymer grafts with embedded gold nanoparticles through the interfacial chemistry of aryl diazonium salts. Polymer, 52, 4463–4470. DOI: 10.1016/j.polymer.2011.08.007.

    CAS  Article  Google Scholar 

  18. Ghosh, D., & Chen, S.W. (2008a). Palladium nanoparticles passivated by metal-carbon covalent linkages. Journal of Material Chemistry, 18, 755–762. DOI: 10.1039/b715397j.

    CAS  Article  Google Scholar 

  19. Ghosh, D., & Chen, S. W. (2008b). Solid-state electronic conductivity of ruthenium nanoparticles passivated by metal-carbon covalent bonds. Chemical Physics Letters, 465, 115–119. DOI: 10.1016/j.cplett.2008.09.066.

    CAS  Article  Google Scholar 

  20. Ghosh, D., Pradhan, S., Chen, W., & Chen, S. W. (2008). Titanium nanoparticles stabilized by Ti-C covalent bonds. Chemistry of Materials, 20, 1248–1250. DOI: 10.1021/cm703423k.

    CAS  Article  Google Scholar 

  21. Grabar, K. C., Freeman, R. G., Hommer, M. B., & Natan, M. J. (1995). Preparation and characterization of Au colloid monolayers. Analytical Chemistry, 67, 735–743. DOI: 10.1021/ac00100a008.

    CAS  Article  Google Scholar 

  22. Guo, D. J., & Li, H. L. (2005a). Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon, 43, 1259–1264. DOI: 10.1016/j.carbon.2004.12.021.

    CAS  Article  Google Scholar 

  23. Guo, D. J., & Li, H. L. (2005b). High dispersion and electrocatalytic properties of platinum on functional multiwalled carbon nanotubes. Electroanalysis, 17, 869–872. DOI: 10.1002/elan.200403164.

    CAS  Article  Google Scholar 

  24. Harnisch, J. A., Pris, A. D., & Porter, M. D. (2001). Attachment of gold nanoparticles to glassy carbon electrodes via a mercaptobenzene film. Journal of the American Chemical Society, 123, 5829–5830. DOI: 10.1021/ja010564i.

    CAS  Article  Google Scholar 

  25. Harper, J. C., Polsky, R., Dirk, S. M., Wheeler, D. A., & Brozik, S. M. (2007). Electroaddressable selective functionalization of electrode arrays: Catalytic NADH detection using aryl diazonium modified gold electrodes. Electroanalysis, 19, 1268–1274. DOI: 10.1002/elan.200703867.

    CAS  Article  Google Scholar 

  26. Hu, G. Z., Ma, Y. G., Guo, Y., & Shao, S. J. (2008a). Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode. Electrochimica Acta, 53, 6610–6615. DOI: 10.1016/j.electacta.2008.04.054.

    CAS  Article  Google Scholar 

  27. Hu, G. Z., Zhang, D. P., Wu, W. L., & Yang, Z. S. (2008b). Selective determination of dopamine in the presence of high concentration of ascorbic acid using nano-Au self-assembly glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 62, 199–205. DOI: 10.1016/j.colsurfb.2007.10.001.

    CAS  Article  Google Scholar 

  28. Ingram, R. S., Hostetler, M. J., & Murray, R. W. (1997). Polyhetero-ω-functionalized alkanethiolate-stabilized gold cluster compounds. Journal of the American Chemical Society, 119, 9175–9178. DOI: 10.1021/ja971734n.

    CAS  Article  Google Scholar 

  29. Ivanova, V., Baunach, T., & Kolb, D. M. (2005). Metal deposition onto a thiol-covered gold surface: A new approach. Electrochimica Acta, 50, 4283–4288. DOI: 10.1016/j.electacta.2005.05.047.

    CAS  Article  Google Scholar 

  30. Jürmann, G., Schiffrin, D. J., & Tammeveski, K. (2007). The pH-dependence of oxygen reduction on quinone-modified glassy carbon electrodes. Electrochimica Acta, 53, 390–399. DOI: 10.1016/j.electacta.2007.03.053.

    Article  Google Scholar 

  31. Kannan, P., & Abraham John, S. (2009). Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode. Analytical Biochemistry, 386, 65–72. DOI: 10.1016/j.ab.2008.11.043.

    CAS  Article  Google Scholar 

  32. Kariuki, J. K., & McDermott, M. T. (1999). Nucleation and growth of functionalized aryl films on graphite electrodes. Langmuir, 15, 6534–6540. DOI: 10.1021/la990295y.

    CAS  Article  Google Scholar 

  33. Katz, E., Willner, I., & Wang, J. (2004). Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis, 16, 19–44. DOI: 10.1002/elan.200302930.

    CAS  Article  Google Scholar 

  34. Kullapere, M., Marandi, M., Matisen, L., Mirkhalaf, F., Carvalho, A. E., Maia, G., Sammelselg, V., & Tammeveski, K. (2011). Blocking properties of gold electrodes modified with 4-nitrophenyl and 4-decylphenyl group. Journal of Solid State Electrochemistry, in press. DOI: 10.1007/s10008-011-1381-0.

  35. Kullapere, M., Mirkhalaf, F., & Tammeveski, K. (2010). Electrochemical behaviour of glassy carbon electrodes modified with aryl groups. Electrochimica Acta, 56, 166–173. DOI: 10.1016/j.electacta.2010.08.104.

    CAS  Article  Google Scholar 

  36. Laurentius, L., Stoyanov, S. R., Gusarov, S., Kovalenko, A., Du, R., Lopinski, G. P., & McDermott, M. T. (2011). Diazomiumderived aryl films on gold nanoparticles: Evidence for a carbon-gold covalent bond. ACS Nano, 5, 4219–4227. DOI: 10/1021/nn201110r.

    CAS  Article  Google Scholar 

  37. Leite, E. R. (Ed.) (2009). Nanostructured materials for electrochemical energy production and storage. New York, NY, USA: Springer. DOI: 10.1007/978-0-387-49323-7.

    Google Scholar 

  38. Lennox, R. B. (2001). Thiol-functionalized nanoparticles. In K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, & S. Mahajan (Eds.), Encyclopedia of materials: Science and technology (Vol. 10, pp. 9344–9348). Oxford, UK: Elsevier. DOI: 10.1016/b0-08-043152-6/01683-1.

    Google Scholar 

  39. Liu, G. Z., Böcking, T., & Gooding, J. J. (2007). Diazonium salts: Stable monolayers on gold electrodes for sensing applications. Journal of Electroanalytical Chemistry, 600, 335–344. DOI: 10.1016/j.elechem.2006.09.012.

    CAS  Article  Google Scholar 

  40. Liu, G. Z., Liu, J. Q., Böcking, T., Eggers, P. K., & Gooding, J. J. (2005). The modification of glassy carbon and gold electrodes with aryl diazonium salt: The impact of the electrode materials on the rate of heterogeneous electron transfer. Chemical Physics, 319, 136–146. DOI: 10.1016/j.chemphys.2005.03.033.

    CAS  Article  Google Scholar 

  41. Liu, G. Z., Luais, E., & Gooding, J. J. (2011). The fabrication of stable gold nanoparticle-modified interfaces for electrochemistry. Langmuir, 27, 4176–4183. DOI: 10.1021/la104373v.

    CAS  Article  Google Scholar 

  42. Liu, J. Y., Cheng, L., Liu, B. F., & Dong, S. J. (2000a). Covalent modification of a glassy carbon surface by 4-aminobenzoic acid and its application in fabrication of a polyoxometalates-consisting monolayer and multilayer film. Langmuir, 16, 7471–7476. DOI: 10.1021/la9913506.

    CAS  Article  Google Scholar 

  43. Liu, S. Q., Tang, Z. Y., Wang, E. K., & Dong, S. J. (2000b). Electrocrystallized platinum nanoparticle on carbon substrate. Electrochemistry Communications, 2, 800–804. DOI: 10.1016/s1388-2481(00)00125-9.

    CAS  Article  Google Scholar 

  44. Lin, T. H., & Hung, W. H. (2009). Electrochemical deposition of gold nanoparticles on a glassy carbon electrode modified with sulfanilic acid. Journal of the Electrochemical Society, 156(2), D45–D50. DOI: 10.1149/1.3033524.

    CAS  Article  Google Scholar 

  45. Liz-Marzàn, L. M., & Kamat, P. V. (2003). Nanoscale materials. Dordrecht, The Netherlands: Kluwer Academic Publications.

    Google Scholar 

  46. Lou, Y. B., Maye, M. M., Han, L., Lou, J., & Zhong, C. J. (2001). Gold-platinum alloy nanoparticle assembly as catalyst for methanol electrooxidation. Chemical Communications, 5, 473–474. DOI: 10.1039/b008669j.

    Article  Google Scholar 

  47. Mahouche-Chergui, S., Gam-Derouich, S., Mangeney, C., & Chehimi, M. M. (2011). Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chemical Society Reviews, 40, 4143–4166. DOI: 10.1039/c0cs00179a.

    CAS  Article  Google Scholar 

  48. Manolova, M., Ivanova, V., Kolb, D. M., Boyen, H. G., Ziemann, P., Büttner, M., Romanyuk, A., & Oelhafen, P. (2005). Metal deposition onto thiol-covered gold: Platinum on a 4-mercaptopyridine SAM. Surface Science, 590, 146–153. DOI: 10.1016/j.susc.2005.06.005.

    CAS  Article  Google Scholar 

  49. Manolova, M., Kayser, M., Kolb, D. M., Boyen, H. G., Ziemann, P., Mayer, D., & Wirth, A. (2007). Rhodium deposition onto a 4-mercaptopyridine SAM on Au(111). Electrochimica Acta, 52, 2740–2745. DOI: 10.1016/j.electacta.2006.08.038.

    CAS  Article  Google Scholar 

  50. Maye, M. M., Lou, Y. B., & Zhong, C. J. (2000). Core-shell gold nanoparticle assembly as novel electrocatalyst of CO oxidation. Langmuir, 16, 7520–7523. DOI: 10.1021/la000503i.

    CAS  Article  Google Scholar 

  51. McCreery, R. L. (2004). Molecular electronic junctions. Chemistry of Materials, 16, 4477–4496. DOI: 10.1021/cm049517q.

    CAS  Article  Google Scholar 

  52. Miles, D. T., & Murray, R. W. (2001). Redox and doublelayer charging of phenothiazine functionalized monolayer-protected clusters. Analytical Chemistry, 73, 921–929. DOI: 10.1021/ac0012647.

    CAS  Article  Google Scholar 

  53. Mirkhalaf, F., Mason, T. J., Morgan, D. J., & Saez, V. (2011). Frequency effects on the surface coverage of nitrophenyl films ultrasonically grafted onto indium tin oxide. Langmuir, 27, 1853–1858. DOI: 10.1021/la104402z.

    CAS  Article  Google Scholar 

  54. Mirkhalaf, F., Paprotny, J., & Schiffrin, D. J. (2006). Synthesis of metal nanoparticles stabilized by metal-carbon bonds. Journal of the American Chemical Society, 128, 7400–7401. DOI: 10.1021/ja058687g.

    CAS  Article  Google Scholar 

  55. Mirkhalaf, F., & Schiffrin, D. J. (2010). Electrocatalytic oxygen reduction on functionalized gold nanoparticles incorporated in a hydrophobic environment. Langmuir, 26, 14995–15001. DOI: 10.1021/la1021565.

    CAS  Article  Google Scholar 

  56. Mirkhalaf, F., Tammeveski, K., & Schiffrin, D. J. (2004). Substituent effects on the electrocatalytic reduction of oxygen on quinone-modified glassy carbon electrodes. Physical Chemistry Chemical Physics, 6, 1321–1327. DOI: 10.1039/b3159 63a.

    CAS  Article  Google Scholar 

  57. Mirkhalaf, F., Tammeveski, K., & Schiffrin, D. J. (2009). Electrochemical reduction of oxygen on nanoparticulate gold electrodeposited on a molecular template. Physical Chemistry Chemical Physics, 11, 3463–3471. DOI: 10.1039/b818439a.

    CAS  Article  Google Scholar 

  58. Mirkin, C. A., Letsinger, R. L., Mucic, R. C., & Storhoff, J. J. (1996). A DNA based method for rationally assembling nanoparticles onto macroscopic materials. Nature, 382, 607–609. DOI: 10.1038/382607a0.

    CAS  Article  Google Scholar 

  59. Murray, R. W. (2008). Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chemical Reviews, 108, 2688–2720. DOI: 10.1021/cr068077e.

    CAS  Article  Google Scholar 

  60. Noël, J. M., Zigah, D., Simonet, J., & Hapiot, P. (2010). Synthesis and immobilization of Ag° nanoparticles on diazonium modified electrodes: SECM and cyclic voltammetry study of the modified interfaces. Langmuir, 26, 7638–7643. DOI: 10.1021/la 904413h.

    Article  Google Scholar 

  61. Oyama, M. (2010). Recent nanoarchitectures in metal nanoparticle-modified electrodes for electroanalysis. Analytical Sciences, 26, 1–12. DOI: 10.2116/analsci.26.1.

    CAS  Article  Google Scholar 

  62. Polsky, R., Harper, J. C., Wheeler, D. A., Dirk, S. M., Arango, D. C., & Brozik, S. M. (2008). Electrically addressable diazonium-functionalized antibodies for multianalyte electrochemical sensor applications. Biosensors and Bioelectronics, 23, 757–764. DOI: 10.1016/j.bios.2007.08.013.

    CAS  Article  Google Scholar 

  63. Qu, D., & Uosaki, K. (2006). Electrochemical metal deposition on top of an organic monolayer. Journal of Physical Chemistry, B., 110, 17570–17577. DOI: 10.1021/jp0632135.

    CAS  Article  Google Scholar 

  64. Raj, C. J., Abdelrahman, A. I., & Ohsaka, T. (2005). Gold nanoparticle-assisted electroreduction of oxygen. Electrochemistry Communications, 7, 888–893. DOI: 10.1016/j.elecom2005.06.005.

    CAS  Article  Google Scholar 

  65. Raj, C. J., Okajima, T., & Ohsaka, T. (2003). Gold nanoparticle arrays for the voltammetric sensing of dopamine. Journal of Electroanalytical Chemistry, 543, 127–133. DOI: 10.1016/s0022-0728(02)01481-x.

    CAS  Article  Google Scholar 

  66. Rosi, L. N., & Mirkin, C. A.(2005). Nanostructures in biodiagnostics. Chemical Reviews, 105, 1547–1562. DOI: 10.1021/cr030067f.

    CAS  Article  Google Scholar 

  67. Sarapuu, A., Vaik, K., Schiffrin, D. J., & Tammeveski, K. (2003). Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. Journal of Electroanalytical Chemistry, 541, 23–29. DOI: 10.1016/s0022-0728(02)01311-6.

    CAS  Article  Google Scholar 

  68. Sides, C. R., & Martin, C. R. (2009). Deposition into templates. In P. Schmuki, & S. Virtanen (Eds.), Electrochemistry at the nanoscale (pp. 279–320). New York, NY, USA: Springer. DOI: 10.1007/978-0-387-73582-5.

    Google Scholar 

  69. Sivanesan, A., Kannan, P., & Abraham John, S. (2007). Electrocatalytic oxidation of ascorbic acid using a single layer of gold nanoparticles immobilized on 1,6-hexanedithiol modified gold electrode. Electrochimica Acta, 52, 8118–8124. DOI: 10.1016/j.electacta.2007.07.020.

    CAS  Article  Google Scholar 

  70. Stewart, M. P., Maya, F., Kosynkin, D. V., Dirk, S. M., Stapleton, J. J., McGuiness, C. L., Allara, D. L., & Tour, J. M. (2004). Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryldiazonium salts. Journal of the American Chemical Society, 126, 370–378. DOI: 10.1021/ja0383120.

    CAS  Article  Google Scholar 

  71. Stolarczyk, K., & Bilewicz, R. (2006). Electron transport through alkanethiolate films decorated with monolayer protected gold clusters. Electrochimica Acta, 51, 2358–2365. DOI: 10.1016/j.electacta.2005.03.091.

    CAS  Article  Google Scholar 

  72. Stolarczyk, K., Pałlys, B., & Bilewicz, R. (2004). Catalytic properties of 4-hydroxythiophenol protected gold nanoclusters supported on gold electrodes. Journal of Electroanalytical Chemistry, 564, 93–98. DOI: 10.1016/j.elechem.2003.09.031.

    CAS  Article  Google Scholar 

  73. Tammeveski, K., Kontturi, K., Nichols, R. J., Potter, R. J., & Schiffrin, D. J. (2001). Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 515, 101–112. DOI: 10.1016/s0022-0728(01)00633-7.

    CAS  Article  Google Scholar 

  74. Tang, Z. Y., Liu, S. Q., Dong, S. J., & Wang, E. K. (2001). Electrochemical synthesis of Ag nanoparticles on functional carbon surfaces. Journal of Electroanalytical Chemistry, 502, 146–151. DOI: 10.1016/s0022-0728(01)00344-8.

    CAS  Article  Google Scholar 

  75. Templeton, A. C., Wuelfing, W. P., & Murray, R. W. (2000). Monolayer-protected cluster molecules. Accounts of Chemical Research, 33, 27–36. DOI: 10.1021/ar9602664.

    CAS  Article  Google Scholar 

  76. Turkevich, J., Stevenson, P. C., & Hillier, J. (1953). The formation of colloidal gold. Journal of Physical Chemistry, 57, 670–673. DOI: 10.1021/j150508a015.

    CAS  Article  Google Scholar 

  77. Urchaga, P., Weissmann, M., Baranton, S., Girardeau, T., & Coutanceau, C. (2009). Improvement of the platinum nanoparticles-carbon substrate interaction by insertion of a thiophenol molecular bridge. Langmuir, 25, 6543–6550. DOI: 10.1021/la9000973.

    CAS  Article  Google Scholar 

  78. Vaik, K., Sarapuu, A., Tammeveski, K., Mirkhalaf, F., & Schiffrin, D. J. (2004). Oxygen reduction on phenanthrene-quinone-modified glassy carbon electrodes in 0.1 M KOH. Journal of Electroanalytical Chemistry, 564, 159–166. DOI: 10.1016/j.elechem2003.08.024.

    CAS  Article  Google Scholar 

  79. Vayenas, C. G., Beblis, S., Pliangos, C., Brosda, S., & Tsiplakides, D. (2002). Electrochemical activation of catalysis. New York, NY, USA: Kluwer Academic Publishers.

    Google Scholar 

  80. Vil`a, N., Van Brussel, M., DłAmours, M., Marwan, J., Buess-Herman, C., & Bélanger, D. (2007). Metallic and bimetallic Cu/Pt species supported on carbon surfaces by means of substituted phenyl groups. Journal of Electroanalytical Chemistry, 609, 85–93. DOI: 10.1016/j.jelechem.2007.06.026.

    CAS  Article  Google Scholar 

  81. Wang, L., Bai, J. Y., Huang, P. F., Wang, H. J., Zhang, L. Y., & Zhao, Y. Q. (2006a). Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine. Electrochemistry Communications, 8, 1035–1040. DOI: 1016/jelecom.2006.08.12.

    CAS  Article  Google Scholar 

  82. Wang, L., Bai, J. Y., Huang, P. F., Wang, H. J., Zhang, L. Y., & Zhao, Y. Q. (2006b). Nanostructured gold colloid electrode based on in situ functionalized self-assembled monolayers on gold electrode. Electrochemistry Communications, 8, 18251829. DOI: 1016/j.elecom.2006.08.013.

    Google Scholar 

  83. Welch, C. M., & Compton, R. G. (2006). The use of nanoparticles in electroanalysis: a review. Analytical and Bioanalytical Chemistry, 384, 601–619. DOI: 10.1007/s00216-005-0230-3.

    CAS  Article  Google Scholar 

  84. Wildgoose, G. G, Banks, C. E., & Compton, R. G. (2006). Metal nanoparticles and related materials supported on carbon nanotubes. Methods and applications. Small, 2, 182–193. DOI: 10:1002/smll.200500324.

    CAS  Google Scholar 

  85. Wilson, R. (2008). The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews, 37, 2028–2045. DOI: 10.1039/b712179m.

    CAS  Article  Google Scholar 

  86. Yee, C. K., Jordan, R., Ulman, A., White, H., King, A., Rafailovich, M., & Sokolov, J. (1999). Novel one-phase synthesis of thiol functionalized gold, palladium, and iridium nanoparticles using superhydride. Langmuir, 15, 3486–3491. DOI: 10.1021/la990015e.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fakhradin Mirkhalaf.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mirkhalaf, F., Graves, J.E. Nanostructured electrocatalysts immobilised on electrode surfaces and organic film templates. Chem. Pap. 66, 472–483 (2012). https://doi.org/10.2478/s11696-011-0110-6

Download citation

Keywords

  • nanostructured materials
  • nanoparticles
  • electrocatalysts
  • diazonium
  • monolayer protected nanoparticles
  • size-controlled metal deposition
  • templated metal nanoparticles