Skip to main content
Log in

Influence of selected biowaste materials pre-treatment on their anaerobic digestion

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The topic of this study is the pre-treatment of substrates for anaerobic digestion. Two different substrates of algae Scenedesmus subspicatus (SAG 86.81), Chlorella kessleri (LARG/1) and foliage of Prunus serrulata were subjected to anaerobic digestion. A mixture of commercially available cellulolytic enzymes (Analytical science s.r.o., Modra, Slovakia) was used for anaerobic treatment of algae while the foliage of Prunus serrulata was pre-treated by lignolytic fungi. The highest production of methane per mass of volatile solids was reached with untreated Chlorella kessleri at (0.59 ± 0.04) L g−1. The addition of cellulolytic enzymes did not increase the production of methane from the algal substrate; however, a faster substrate degradation and thus also higher speed of methane production at the beginning of cultivation was achieved. After foliage pre-treatment by fungal isolate Pleurotus pulmonarius, isolated from natural habitats, the methane production increased five times. In this way we were able to speed up the processes of biological degradation of ligno-cellulose materials and thereby to increase the production of methane. Our results show the possibility of using algae as a suitable substrate for biogas production. On the other hand, also aerobic pre-treatment of foliage (Pleurotus pulmonarius) presents a successful way for speeding up the degradation of ligno-cellulose waste leading to increased methane yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., & Gruber, L. (2007). Biogas production from maize and dairy cattle manure — Influence of biomass composition on the methane yield. Agriculture, Ecosystems & Environment, 118, 173–182. DOI: 10.1016/j.agee.2006.05.007.

    Article  CAS  Google Scholar 

  • Allard, B., & Templier, J. (2001). High molecular weight lipids from the trilaminar outer wall (TLS)-containing microalgae Chlorella emersonii, Scenedesmus communis and Tetraedron minimum. Phytochemistry, 57, 459–467. DOI: 10.1016/s0031-9422(01)00071-1.

    Article  CAS  Google Scholar 

  • Ballerini, D., Desmarquest, J. P., Pourquié, J., Nativel, F., & Rebeller, M. (1994). Ethanol production from lignocellulosics. Large scale experimentation and economics. Bioresource Technology, 5, 17–23. DOI: 10.1016/0960-8524(94)90215-1.

    Google Scholar 

  • Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25, 207–210. DOI: 10.1016/j.biotechadv.2006.11.002.

    Article  CAS  Google Scholar 

  • Benemann, J. R., Pursoff, P., & Oswald, W. J. (1978). Engineering design and cost analysis of a large-scale microalgae biomass system. Washington, DC, USA: US Department of Energy. (NTIS No. CP/T1605-01 UC-61).

    Google Scholar 

  • Chen, P. H. (1987). Factors influencing methane fermentation of micro-algae. PhD thesis, University of California, Berkeley, CA, USA.

    Google Scholar 

  • Chen, H. Z., Liu, L. Y., Yang, X. X., & Li, Z. H. (2005). New process of maize stalk amination treatment by steam explosion. Biomass and Bioenergy, 28, 411–417. DOI: 10.1016/j.biombioe.2004.06.010.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2007). Progress and recent trends in biofuels. Progress in Energy and Combustion Science, 33, 1–18. DOI: 10.1016/j.pecs.2006.06.001.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion and Management, 51, 2738–2749. DOI: 10.1016/j.enconman.2010.06.010.

    Article  CAS  Google Scholar 

  • Dragone, G., Fernandes, B., Vicente, A. A., & Teixeira, J. A. (2010). Third generation biofuels from microalgae. In A. Méndez-Vilas (Ed.), Current research, technology and education topics in applied microbiology and microbial biotechnology (Microbiology Series No. 2, Vol. 2, pp. 1355–1366). Badajoz, Spain: FORMATEX.

    Google Scholar 

  • Dřímal, P., & Hoffmann, J. (2006). Biodegradability testing of organic substances in aqueous environment using automatic analyser micro-oxymax. Acta Metallurgica Slovaca, 12, 76–84.

    Google Scholar 

  • Elser, J. J., Fagan, W. F., Denno, R. F., Dobberfuhl, D. R., Folarin, A., Huberty, A., Interlandi, S., Kilham, S. S., Mc-Cauley, E., Schulz, K. L., Siemann, E. H., & Sterner, R. W. (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578–580. DOI: 10.1038/35046058.

    Article  CAS  Google Scholar 

  • European Committee for Standardization (2002a). EN 12880: Characterization of sludges. Determination of dry residue and water content. Brussels, Belgium.

  • European Committee for Standardization (2002b). EN 12879: Characterization of sludges. Determination of the loss on ignition of dry mass. Brussels, Belgium.

  • Fernando, S., Adhikari, S., Chandrapal, C., & Murali, N. (2006). Biorefineries: Current status challenges, and future direction. Energy & Fuels, 20, 1727–1737. DOI: 10.1021/ef060097w.

    Article  CAS  Google Scholar 

  • Foree, E. G., & McCarty, P. L. (1970). Anaerobic decomposition of algae. Environmental Science & Technology, 4, 842–849. DOI: 10.1021/es60045a005.

    Article  CAS  Google Scholar 

  • Gelin, F., Volkman, J. K., Largeau, C., Derenne, S., Sinninghe Damsté, J. S., & De Leeuw, J. W. (1999). Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae. Organic Geochemistry, 30, 147–159. DOI: 10.1016/s0146-6380(98)00206-x.

    Article  CAS  Google Scholar 

  • Golueke, C. G., Oswald, W. J., & Gotaas, H. B. (1957). Anaerobic digestion of algae. Applied Microbiology, 5, 47–55.

    CAS  Google Scholar 

  • Grobbelaar, J. U. (2004). Algal nutrition - Mineral nutrition. In A. Richmond (Ed.), Handbook of microalgal culture: biotechnology and applied phycology (pp. 95–115). Oxford, UK: Wiley-Blackwell.

    Google Scholar 

  • Hammel, K. E. (1997). Fungal degradation of lignin. In G. Cadisch, & K. E. Giller (Eds.), Driven by nature: Plant litter quality and decomposition. (chapter 2, pp. 33–45). Wallingford, UK: CAB International.

    Google Scholar 

  • Harun, R., Davidson, M., Doyle, M., Gopiraj, R., Danquah, M., & Forde, G. (2011). Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass and Bioenergy, 35, 741–747. DOI: 10.1016/j.biombioe.2010.10.007.

    Article  CAS  Google Scholar 

  • Heaven, S., Milledge, J., & Zhang, Y. (2011). Comments on ‘Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable’. Biotechnology Advances, 29, 164–167. DOI: 10.1016/j.biotechadv.2010.10.005.

    Article  CAS  Google Scholar 

  • Hudecová, D., & Majtán, V. (2002). Algae. In Y. Gbelská, & D. Mlynarčík (Eds.), Microbiology I. (pp. 79–84). Bratislava, Slovakia: Slovak University of Technology.

    Google Scholar 

  • Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27, 631–635. DOI: 10.1016/s0141-0229(00)00266-0.

    Article  CAS  Google Scholar 

  • Kacprzak, A., Krzystek, L., & Ledakowicz, S. (2010). Codigestion of agricultural and industrial wastes. Chemical Papers, 64, 127–131. DOI: 10.2478/s11696-009-0108-5.

    Article  CAS  Google Scholar 

  • Lissens, G., Ahring, B., & Verstraete, W. (2003). Pretreatment technologies for enhanced energy and material recovery of agricultural and municipal organic wastes in anaerobic digestion. In: T. Al Saed, & J. B. Holm-Nilsen (Eds.), Proceedings of the Future of Biogas in Europe II, European Biogas Workshop, October 2–4, 2003 (pp. 79–85). Esbjerg, Dernmark.

  • Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577. DOI: 10.1128/mmbr.66.3.506-577.2002.

    Article  CAS  Google Scholar 

  • Meier, R. L. (1955). Biological cycles in the transformation of solar energy into useful fuels. In F. Daniels, & J. A. Duffie (Eds.), Solar energy research (pp. 179–183). Madison, WI, USA: University of Wisconsin Press.

    Google Scholar 

  • Mshandete, A., Björnsson, L., Kivaisi, A. K., Rubindamayugi, M. S. T., & Mattiasson, B. (2006). Effect of particles size on biogas yield from sisal fibres waste. Renewable Energy, 31, 2385–2392. DOI: 10.1016/j.renene.2005.10.015.

    Article  CAS  Google Scholar 

  • Muthangya, M., Mshandete, A. M., & Kivaisi, A. K. (2009). Enhancement of anaerobic digestion of sisal leaf decortication residues by biological pre-treatment. ARPN Journal of Agriculture and Biological Sciences, 4, 66–73.

    Google Scholar 

  • Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14, 578–597. DOI: 10.1016/j.rser.2009.10.003.

    Article  CAS  Google Scholar 

  • Kitani, O., & Hall, C.W. (1989). Biomass handbook. NewYork, NY, USA: Gordon Breach Science Publisher.

    Google Scholar 

  • Oswald, W. J., & Golueke, C. G. (1960). Biological transformation of solar energy. Advances in Applied Microbiology, 2, 223–262. DOI: 10.1016/s0065-2164(08)70127-8.

    Article  CAS  Google Scholar 

  • Ras, M., Lardon, L., Sialve, B., Bernet, N., & Steyer, J. P. (2011). Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresource Technology, 102, 200–206. DOI: 10.1016/j.biortech.2010.06.146.

    Article  CAS  Google Scholar 

  • Samson, R., & Leduy, A. (1982). Biogas production from anaerobic digestion of Spirulina maxima algal biomass. Biotechnology and Bioengineering, 24, 1919–1924. DOI: 10.1002/bit.260240822.

    Article  CAS  Google Scholar 

  • Sánchez Hernández, E. P., & Travieso Córdoba, L. (1993). Anaerobic digestion of Chlorella vulgaris for energy production. Resources, Conservation and Recycling, 9, 127–132. DOI: 10.1016/0921-3449(93)90037-g.

    Article  Google Scholar 

  • Schattauer, A., & Weiland, P. (2004). Handreichung Biogasgewinnung und -nutzung. (Förderkennzeichen 222027200, pp. 4/1–4/13). Gülzow-Prüzen, Germany: Fachagentur Nachwachsende Rohstoffe.

    Google Scholar 

  • Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgae biodiesel sustainable. Biotechnology Advances, 27, 409–41 DOI: 10.1016/j.biotechadv.2009.03.001.

    Article  CAS  Google Scholar 

  • Speece, R. E. (1996). Anaerobic biotechnology for industrial wastewaters. Nashville, TN, USA: Archae Press.

    Google Scholar 

  • Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38, 719–833. DOI: 10.1016/j.orggeochem.2007.01.001.

    Article  CAS  Google Scholar 

  • Yen, H.W., & Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98, 130–134. DOI: 10.1016/j.biortech.2005.11.010.

    Article  CAS  Google Scholar 

  • Zamalloa, C., Vulsteke, E., Albrecht, J., & Verstraete, W. (2011). The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresource Technology, 102, 1149–1158. DOI: 10.1016/j.biortech.2010. 09.017.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alžbeta Takáčová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takáčová, A., Mackluľak, T., Smolinská, M. et al. Influence of selected biowaste materials pre-treatment on their anaerobic digestion. Chem. Pap. 66, 129–137 (2012). https://doi.org/10.2478/s11696-011-0107-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0107-1

Keywords

Navigation