Skip to main content
Log in

The use of stable isotopes ratios for authentication of fruit juices

  • Short Communication
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The determination of the content of stable isotopes, 18O and 2H, respectively, in juice water facilitates the distinction between authentic juices and juices made from concentrates by redilution with tap water. At the same time, the detection of C4 cane or corn-derived sugar syrups in fruit juices which are produced from C3 fruit types is thus facilitated by the characteristic differences in 13C/12C, expressed as δ 13C (‰) values due to photosynthetic CO2 assimilation via the C3−, C4−, and crassulacean acid metabolism pathways. In this study, the quantitative determination of water added to an authentic juice, on the basis of δ 18O, and δ 2H values, respectively, was successfully performed. Also, the δ 18O, and δ 2H of juice water and δ 13C of the whole juice in 18 samples were also determined. The results obtained provided us with the possibility of distinguishing between authentic fruit juices and those obtained by redilution of concentrated fruit juices and the detection of C4 type added sugar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Crittenden, R. G., Andrew, A. S., LeFournour, M., Young, M. D., Middleton, H., & Stockmann, R. (2007). Determining the geographic origin of milk in Australasia using multi-element stable isotope ratio analysis. International Dairy Journal, 17, 421–428. DOI: 10.1016/j.idairyj.2006.05.012.

    Article  CAS  Google Scholar 

  • Dunbar, J., & Wilson, A. T. (1983). Oxygen and hydrogen isotopes in fruit and vegetable juices. Plant Physiology, 72, 725–727. DOI: 10.1104/pp.72.3.725.

    Article  CAS  Google Scholar 

  • European Committee for Standardisation (1996). Determination of the stable oxygen isotope ratio (18O/16O) of water from fruit juices - Method using Isotope Ratio Mass Spectrometry. CEN/TC174 No. 109. Brussels, Belgium.

  • International Atomic Energy Agency (1968). Vienna Standard Mean Ocean Water. Vienna, Austria.

  • International Atomic Energy Agency (1983). Vienna Pee Dee Belemnite. Vienna, Austria.

  • Koziet, J., Rossmann, A., Martin, G. J., & Johnson, P. (1995). Determination of the oxygen-18 and deuterium content of fruit and vegetable juice water. An European interlaboratory comparison study. Analytica Chimica Acta, 302, 29–37. DOI: 10.1016/0003-2670(94)00424-K.

    Article  CAS  Google Scholar 

  • Magdas, D. A., & Puscas, R. (2011). Stable isotopes determination in some Romanian fruit juices. Isotopes in Environmental and Health Study, 47, 372–378. DOI: 10.1080/10256016.2011.600454.

    Article  CAS  Google Scholar 

  • Nissenbaum, A., Lifshitz, A., & Stepak, Y. (1974). Detection of citrus juice adulteration using the distribution of natural stable isotopes. Lebensmittel-Wissenschaft-Technology, 7, 152–154.

    CAS  Google Scholar 

  • O’Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry, 20, 553–567. DOI: 10.1016/0031-9422(81) 85134-5.

    Article  Google Scholar 

  • O’Leary, M. H. (1988). Carbon isotopes in photosynthesis. Bio-Science, 38, 328–333.

    Google Scholar 

  • Pupin, A. M., Dennis, M. J., Parker, I., Kelly, S., Bigwood, T., & Toledo, M. C. F. (1998). Use of isotopic analyses to determine the authenticity of Brazilian orange juice (Citrus sinensis). Journal of Agricultural and Food Chemistry, 46, 1369–1373. DOI: 10.1021/jf970746p.

    Article  CAS  Google Scholar 

  • Rossmann, A. (2001). Determination of stable isotope ratios in food analysis. Food Reviews International, 17, 347–381. DOI: 10.1081/FRI-100104704.

    Article  CAS  Google Scholar 

  • Sacco, D., Brescia, M. A., Sgaramella, A., Casiello, G., Buccolieri, A., Ogrinc, N., & Sacco, A. (2009). Discrimination between Southern Italy and foreign milk samples using spectroscopic and analytical data. Food Chemistry, 114, 1559–1563. DOI: 10.1016/j.foodchem.2008.11.056.

    Article  CAS  Google Scholar 

  • Schmidt, H. L., & Winkler, F. J. (1979). Einige Ursachen der Variationsbreite von δ 13C-Werten bei C3- und C4-Pflanzen. Berichte der Deutschen Botanischen Gesellschaft, 92, 185–191.

    CAS  Google Scholar 

  • Simpkins, W. A., Patel, G., Harrison, M., & Goldberg, D. (2000). Stable carbon isotope ratio analysis of Australian orange juices. Food Chemistry, 70, 385–390. DOI: 10.1016/S0308-8146(00)00086-8.

    Article  CAS  Google Scholar 

  • Sternberg, L. O., DeNiro, M. J., & Johnson, H. B. (1984). Isotope ratios of cellulose from plants having different photosynthetic pathways. Plant Physiology, 74, 557–561. DOI: 10.1104/pp.74.3.557.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicoleta Simona Vedeanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magdas, D.A., Vedeanu, N.S. & Puscas, R. The use of stable isotopes ratios for authentication of fruit juices. Chem. Pap. 66, 152–155 (2012). https://doi.org/10.2478/s11696-011-0105-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0105-3

Keywords

Navigation