Skip to main content
Log in

Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Monitoring the enforcement of an EU-wide ban of nitrofuran antibiotics in the food production chain is a challenging task, given the nature of nitrofuran compounds. The original and modified Fenton reactions are advanced oxidation processes that can eliminate the toxicity of nitrofurans. 2-(5-Nitrofuryl)acrylic acid (I) was degraded as a model compound by the original Fenton reaction with ferrous sulphate, by Mohr’s salt at pH 3 and 7, and finally by advanced Fenton process (AFP) (Fe0/H2O2/H2SO4). In addition, the growth inhibition of Escherichia coli, a G bacterium, was tested both before and after AFP treatment. The results showed that a small degradation efficiency of this treatment process led to the toxicity changes and that the toxicity of I after AFP treatment process decreased. It seems that the treatment of polluted water using the Fenton reaction and its modifications would be a suitable method for degradation of nitrofuran derivatives in polluted water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartel, L. C., Montalto de Mecca, M., & Castro, J. A. (2009). Nitroreductive metabolic activation of some carcinogenic nitro heterocyclic food contaminants in rat mammary tissue cellular fractions. Food and Chemical Toxicology, 47, 140–144. DOI: 10.1016/j.fct.2008.09.069.

    Article  CAS  Google Scholar 

  • Chen, J., Xiu, Z., Lowry, G. V., & Alvarez, P. J. J. (2011). Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Research, 45, 1995–2001. DOI: 10.1016/j.watres.2010.11.036.

    Article  CAS  Google Scholar 

  • Cooper, K. M., Mulder, P. P. J., van Rhijn, J. A., Kovacsics, L., McCracken, R. J., Young, P. B., & Kennedy, D. G. (2005). Depletion of four nitrofuran antibiotics and their tissuebound metabolites in porcine tissues and determination using LC-MS/MS and HPLC-UV. Food Additives & Contaminants, 22, 406–414. DOI: 10.1080/02652030512331385218.

    Article  CAS  Google Scholar 

  • Derco, J., Žgajnar Gotvajn, A., Zagorc-Končan, J., Almásiová, B., & Kassai, A. (2010). Pretreatment of landfill leachate by chemical oxidation processes. Chemical Papers, 64, 237–245. DOI: 10.2478/s11696-009-0116-5.

    Article  CAS  Google Scholar 

  • Gomathi Devi, L., Girish Kumar, S., Anantha Raju, K. S., & Eraiah Rajashenkhar, K. (2010). Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron. Chemical Papers, 64, 378–385. DOI: 10.2478/s11696-010-0011-0.

    Article  Google Scholar 

  • Himebaugh, R. R., & Smith, M. J. (1979). Semi-micro tube method for chemical oxygen demand. Analytical Chemistry, 51, 1085–1087. DOI: 10.1021/ac50043a072.

    Article  CAS  Google Scholar 

  • Jantová, S., Greif, G., Špirková, K., Stankovský, Š., & Oravcová, M. (2000). Antibacterial effects of trisubstituted quinazoline derivatives. Folia Microbiologica, 45, 133–137.

    Article  Google Scholar 

  • Klíma, J., Prousek, J., Ludvík, J., & Volke, J. (1984). Electrochemical investigation of radical-anion reactions of 5-nitro-2-furfuryl derivatives. Collection of Czechoslovak Chemical Communications, 49, 1627–1634. DOI: 10.1135/cccc19841627.

    Article  Google Scholar 

  • Kirkland, D., Reeve, L., Gatehouse, D., & Vanparys, P. (2011). A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutation Research, 721, 27–73. DOI: 10.1016/j.mrgentox.2010.12.015.

    CAS  Google Scholar 

  • Leston, S., Nunes, M., Viegas, I., Lemos, M. F. L., Freitas, A., Barbosa, J., Ramos, F., & Pardal, M. A. (2011). The effects of the nitrofuran furaltadone on Ulva lactuca. Chemosphere, 82, 1010–1016. DOI: 10.1016/j.chemosphere.2010.10.067.

    Article  CAS  Google Scholar 

  • Mackuľak, T., Prousek, J., & Švorc, Ľ. (2011). Degradation of atrazine by Fenton and modified Fenton reactions. Monatshefte für Chemie, 142, 561–567. DOI: 10.1007/s00706-011-0504-8.

    Article  Google Scholar 

  • McCracken, R. J., & Kennedy, D. G. (1997). Determination of the furazolidone metabolite, 3-amino-2-oxazolidinone, in porcine tissues using liquid chromatography-thermospray mass spectrometry and the occurrence of residues in pigs produced in Northern Ireland. Journal of Chromatography B, 691, 87–94. DOI: 10.1016/S0378-4347(96)00448-3.

    Article  CAS  Google Scholar 

  • Prousek, J. (2007). Fenton chemistry in biology and medicine. Pure and Applied Chemistry, 79, 2325–2338. DOI: 10.1351/pac200779122325.

    Article  CAS  Google Scholar 

  • Prousek, J. (1980). Electron transfer processes. Reactions of 5-nitrofuryl derivatives going by anionradical mechanism. Collection of Czechoslovak Chemical Communications, 45, 3347–3353.

    CAS  Google Scholar 

  • Prousek, J., Palacková, E., Priesolová, S., Marková, L., & Alevová, A. (2007). Fenton- and Fenton-like AOPs for wastewater treatment: From laboratory-to-plant-scale application. Separation Science and Technology, 42, 1505–1520. DOI: 10.1080/01496390701290151.

    Article  CAS  Google Scholar 

  • Prousek, J., & Priesolová, S. (2002). Practical utilization of zero-valent iron in Fenton reaction for treatment of coloured waste waters. Chemické Listy, 96, 893–896. (in Czech)

    CAS  Google Scholar 

  • Radovnikovic, A., Moloney, M., Byrne, P., & Danaher, M. (2011). Detection of banned nitrofuran metabolites in animal plasma samples using UHPLC-MS/MS. Journal of Chro matography B, 879, 159–166. DOI: 10.1016/j.jchromb.2010.11.036.

    Article  CAS  Google Scholar 

  • Stiborová, M. (2002). Nitroaromatic compounds: Environmental pollutants with carcinogenic potential for humans. Chemické Listy, 96, 784–791. (in Czech)

    Google Scholar 

  • Vieites, M., Otero, L., Santos, D., Olea-Azar, C., Norambuena, E., Aguirre, G., Cerecetto, H., González, M., Kemmerling, U., Morello, A., Maya, J. D., & Gambino, D. (2009). Platinum-based complexes of bioactive 3-(5-nitrofuryl)acroleine thiosemicarbazones showing anti-Trypanosoma cruzi activity. Journal of Inorganic Biochemistry, 103, 411–418. DOI: 10.1016/j.jinorgbio.2008.12.004.

    Article  CAS  Google Scholar 

  • Wang, Y., Gray, J. P., Mishin, V., Heck, D. E., Laskin, D. L., & Laskin, J. D. (2008). Role of cytochrome P450 reductase in nitrofurantoin-induced redox cycling and cytotoxicity. Free Radical Biology & Medicine, 44, 1169–1179. DOI: 10.1016/j.freeradbiomed.2007.12.013.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľubomír Švorc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackuľak, T., Olejníková, P., Prousek, J. et al. Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment. Chem. Pap. 65, 835–839 (2011). https://doi.org/10.2478/s11696-011-0075-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0075-5

Keywords

Navigation