Skip to main content
Log in

Potassium sorbate release from poly(vinyl alcohol)-bacterial cellulose films

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Active packaging materials are the subject of research because their performance exceeds that of traditional packaging. From this class, antimicrobial materials extend the shelf-life of products and reduce the risk of contamination by pathogens. In this paper, new composite materials with antimicrobial properties are obtained by using polyvinyl alcohol and bacterial cellulose powder. Potassium (2E,4E)-hexa-2,4-dienoate was used as the antimicrobial agent. The films thus obtained were characterised using Fourier-transform infrared spectroscopy and scanning electron microscopy. Mass transfer phenomena concerning the release of potassium (2E,4E)-hexa-2,4-dienoate were investigated. The results indicated that the new biocomposite films could be used as antimicrobial packaging materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves, V., Costa, N., Hilliou, L., Larotonda, F., Gonçalves, M., Sereno, A., & Coelhoso, I. (2006). Design of biodegradable composite films for food packaging. Desalination, 199, 331–333. DOI: 10.1016/j.desal.2006.03.078.

    Article  CAS  Google Scholar 

  • Asran, A. S., Henning, S., & Michler, G. H. (2010). Polyvinyl alcohol-collagen-hydroxyapatite biocomposite nanofibrous scaffold: Mimicking the key features of natural bone at the nanoscale level. Polymer, 51, 868–876. DOI: 10.1016/j.polymer.2009.12.046.

    Article  CAS  Google Scholar 

  • Choi, J. H., Choi, W. Y., Cha, D. S., Chinnan, M. J., Park, H. J., Leed, D. S., & Park, J. M. (2005). Diffusivity of potassium sorbate in κ-carrageenan based antimicrobial film. LWT — Food Science and Technology, 38, 417–423. DOI: 10.1016/j.lwt.2004.07.004.

    Article  CAS  Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion (2nd ed., pp. 47–53, 244, 254–257). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Czaja, W., Krystynowicz, A., Bielecki, S., & Brown, R. M., Jr. (2006). Microbial cellulose-the natural power to heal wounds. Biomaterials, 27, 145–151. DOI: 10.1016/j.biomaterials.2005.07.035.

    Article  CAS  Google Scholar 

  • Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., & Tobback, P. (2008). Active and intelligent food packaging: legal aspects and safety concerns. Trends in Food Science & Technology, 19, S103–S112. DOI: 10.1016/j.tifs.2008.09.011.

    Article  Google Scholar 

  • Deore, R. K., Kavitha, K., & Tamizhmani, T. G. (2010). Preparation and evaluation of sustained release matrix tablets of tramadol hydrochloride using glyceryl palmitostearate. Tropical Journal of Pharmaceutical Research, 9, 275–281.

    CAS  Google Scholar 

  • Khare, A., & Deshmukh, S. (2006). Studies toward producing eco-friendly plastics. Journal of Plastic Films and Sheeting, 22, 193–211. DOI: 10.1177/8756087906067324.

    Article  CAS  Google Scholar 

  • Liu, F., Qin, B., He, L., & Song, R. (2009). Novel starch/chitosan blending membrane: Antibacterial, permeable and mechanical properties. Carbohydrate Polymers, 78, 146–150. DOI: 10.1016/j.carbpol.2009.03.021.

    Article  CAS  Google Scholar 

  • Liu, Y., Geever, L. M., Kennedy, J. E., Higginbotham, C. L., Cahill, P. A., & McGuinness, G. B. (2010). Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 3, 203–209. DOI: 10.1016/j.jmbbm.2009.07.001.

    Article  Google Scholar 

  • Musial, W., Kokol, V., & Voncina, B. (2010a). Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures. Chemical Papers, 64, 84–90. DOI: 10.2478/s11696-009-0089-4.

    Article  CAS  Google Scholar 

  • Musial, W., Kokol, V., & Voncina, B. (2010b). Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices. Chemical Papers, 64, 346–353. DOI: 10.2478/s11696-010-0013-y.

    Article  CAS  Google Scholar 

  • Patil, S. B., Kulkarni, U., & Bhavik, P. (2010). Formulation and evaluation of diclofenac potassium matrix tablets. International Journal of Pharmaceutical Sciences and Research, 1(8) Supplement, 88–92.

    CAS  Google Scholar 

  • Peppas, N. A. (1985). Analysis of Fickian and non-Fickian drug release from polymers. Pharmaceutica Acta Helvetiae, 60, 110–111.

    CAS  Google Scholar 

  • Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62, 373–380. DOI: 10.1016/S0309-1740(02)00121-3.

    Article  CAS  Google Scholar 

  • Ritger, P. L., & Peppas, N. A. (1987a). A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release, 5, 23–36. DOI: 10.1016/0168-3659(87)90034-4.

    Article  CAS  Google Scholar 

  • Ritger, P. L., & Peppas, N. A. (1987b). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of Controlled Release, 5, 37–42. DOI: 10.1016/0168-3659(87)90035-6.

    Article  CAS  Google Scholar 

  • Shen, X. L., Wu, J. M., Chen, Y., & Zhao, G. (2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24, 285–290. DOI: 10.1016/j.foodhyd.2009.10.003.

    Article  CAS  Google Scholar 

  • Siepmann, J., & Siepmann, F. (2008). Mathematical modeling of drug delivery. International Journal of Pharmaceutics, 364, 328–343. DOI: 10.1016/j.ijpharm.2008.09.004.

    Article  CAS  Google Scholar 

  • Stoica-Guzun, A., Jecu, L., Gheorghe, A., Raut, I., Stroescu, M., Ghiurea, M., Danila, M., Jipa, I., & Fruth, V. (2011). Biodegradation of poly(vinyl alcohol) and bacterial cellulose composites by Aspergillus niger. Journal of Polymers and the Environment, 19, 69–79. DOI: 10.1007/s10924-010-0257-1.

    Article  CAS  Google Scholar 

  • Yoshida, C. M. P., Bastor, C. E. N., & Franco, T. T. (2010). Modeling of potassium sorbate diffusion through chitosan films. LWT — Food Science and Technology, 43, 584–589. DOI: 10.1016/j.lwt.2009.10.005.

    Article  CAS  Google Scholar 

  • Yoshimi, T., Sugiyama, N., Takeoka, Y., Rikukawa, M., Oribe, K., & Aizawa, M. (2011). Changes of material properties of inorganic/organic hybrids fabricated by infiltration of poly(L-lactic acid) into open pores of porous hydroxyapatite ceramics in a simulated body fluid. Journal of the Australian Ceramic Society, 47, 18–22.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iuliana Mihaela Jipa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jipa, I.M., Stoica, A., Stroescu, M. et al. Potassium sorbate release from poly(vinyl alcohol)-bacterial cellulose films. Chem. Pap. 66, 138–143 (2012). https://doi.org/10.2478/s11696-011-0068-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0068-4

Keywords

Navigation