Skip to main content
Log in

Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The paper evaluates the possibilities and limitations in characterising photochemical properties of individual kinetically labile species being in mutual equilibrium. A model of calculating quantum yield values is elaborated and applied to azidokojic iron(III) complexes in aqueous solutions. Based on the known speciation of the complexes as a function of pH, Fe(III) and azidokojic acid concentrations, electronic absorption spectra of individual species, and the determined overall quantum yield of Fe(II) photoformation at irradiation with monochromatised radiation at 366 nm, the quantum yield of Fe(III) to Fe(II) photoreduction was obtained for each of the complexes present in the investigated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balzani, V., & Carassiti, V. (1970). Photochemistry of coordination compounds. New York, NY, USA: Academic Press.

    Google Scholar 

  • Crisponi, G., & Remelli, M. (2008). Iron chelating agents for the treatment of iron overload. Coordination Chemistry Reviews, 252, 1225–1240. DOI: 10.1016/j.ccr.2007.12.014.

    Article  CAS  Google Scholar 

  • Gomes, A. J., Lunardi, C. N., Gonzalez, S., & Tedesco, A. C. (2001). The oxidant action of Polypodium leucotomos extract and kojic acid: reactions with reactive oxygen species. Brazilian Journal of Medical and Biological Research, 34, 1487–1494. DOI: 10.1590/S0100-879X2001001100018.

    CAS  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (1999). Free radicals in biology and medicine (3rd ed.). Oxford, MS, USA: Oxford University Press.

    Google Scholar 

  • Izakovič, M., Šima, J., & Žitňanský, M. Effects of wavelength and substituents on iron(III) photoreduction in trans-[Fe(R-sal-R′-en)(CH3OH)(NCS)] complexes. Journal of Coordination Chemistry, 58, 1039–1046. DOI: 10.1080/00958970500109448.

  • Juban, E. A., Smeigh, A. L., Monat, J. E., & McCusker, J. K. (2006). Ultrafast dynamics of ligand-field excited states. Coordination Chemistry Reviews, 250, 1783–1791. DOI: 10.1016/j.ccr.2006.02.010.

    Article  CAS  Google Scholar 

  • Makáňová, J., Šima, J., Brezová, V., & Elias, H. (1997). Kinetic and photoredox behaviour of iron(III) complexes with kojic acid. Chemical Papers, 51, 252–257.

    Google Scholar 

  • McCusker, J. K., Walda, K. N., Dunn, R. C., Simon, J. D., Magde, D., & Hendrickson, D. N. (1993). Subpicosecond 1MLCT→5T2 intersystem crossing of low-spin polypyridyl ferrous complexes. Journal of the American Chemical Society, 115, 298–307. DOI: 10.1021/ja00054a043.

    Article  CAS  Google Scholar 

  • Murov, S. L. (1973). Handbook of photochemistry (1st ed.). New York, NY, USA: Marcel Dekker.

    Google Scholar 

  • Petrola, R. (1985). Spectrophotometry study on the equilibrium of substituted 3-hydroxy-4H-pyran-4-ones with Zn(II) ions in aqueous solution. Finnish Chemical Letters, 12, 219–226.

    Google Scholar 

  • Stuglik, Z., & Zagórski, Z. P. (1981). Pulse radiolysis of neutral iron(II) solutions: oxidation of ferrous ions by OH radicals. Radiation Physics and Chemistry, 17, 229–233. DOI: 10.1016/0146-5724(81)90336-8.

    CAS  Google Scholar 

  • Sýkora, J., & Šima, J. (1990). Photochemistry of coordination compounds. Coordination Chemistry Reviews, 107, 1–212. DOI: 10.1016/0010-8545(90)80055-X.

    Article  Google Scholar 

  • Šima, J. (2008a). Optimizing the photoreactivity of chemical compounds — necessity, challenges and obstacles. In T. W. Cartere, & K. S. Verley (Eds.), Coordination chemistry research progress (pp. 71–102). New York, NY, USA: Nova Science Publishers.

    Google Scholar 

  • Šima, J. (2008b). Photochemical reactions of iron(III) complexes — classification, mechanisms, and application. In A. Sánchez, & S. J. Gutierrez (Eds.), Photochemistry research progress (pp. 103–160). New York, NY, USA: Nova Science Publishers.

    Google Scholar 

  • Šima, J., Chochulová, B., Veverka, M., Makáňová, J., Hajšelová, M., & Bradiaková, A. (1993). Efficiency of the photoreduction of iron(III) complexes with kojic acid-derivatives. Polish Journal of Chemistry, 67, 1369–1374.

    Google Scholar 

  • Šima, J., Makáňová, J., & Veverka, M. (1995). Photoredox properties of kojic acid and its derivatives complexed to iron(III). Monatshefte für Chemie, 126, 149–154. DOI: 10.1007/BF00812243.

    Article  Google Scholar 

  • Šima, J., Mrázová, J., & Kotočová, A. (1999). Photoredox properties of iron(III) fluoro complexes containing tetradentate open chain N2O2-ligands. Journal of the Chinese Chemical Society, 46, 993–997.

    Google Scholar 

  • Šima, J., & Šípoš, R. (2009). Applied photochemistry of iron(III) compounds. In M. Melník, P. Segľa, & M. Tatarko (Eds.), Insight into coordination, bioinorganic and applied inorganic chemistry (pp. 306–365). Bratislava, Slovakia: STU Press.

    Google Scholar 

  • Šípoš, R., Šima, J., Izakovič, M., & Tarapčík, P. (2011). Solution properties of azidokojatoiron(III) complexes. Journal of Solution Chemistry. (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Šima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šimo, F., Šima, J. Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems. Chem. Pap. 65, 730–734 (2011). https://doi.org/10.2478/s11696-011-0058-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0058-6

Keywords

Navigation