Skip to main content
Log in

Determination of carbon in solidified sodium coolant using new ICP-OES methods

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

New methods for the determination of carbon in sodium using laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) and ICP-OES with pneumatic nebulisation (PN-ICP-OES) were developed. The determination was required for the study of the carbon dioxide reaction with molten sodium at high temperatures (300–600°C). After exposition to CO2, the solidified sodium sample was subjected to direct solid analysis by LA-ICP-OES and to solution analysis. For the determination of carbon in the sodium sample surface layer by LA-ICP-OES, three different matrices containing sodium were tested (NaCl, NaF, and Na2B4O7 · 10H2O) as calibration pellets. The calibration dependences were improved using sodium as the internal standard. Average carbon content in the sodium bulk sample was determined by PN-ICP-OES after the sample dissolution by water vapour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beguin, F., & Setton, R. (1970). Action des métaux alcalins sur l’anhydride carbonique. Bulletin de la Société Chimique de France, 11, 3814–3816.

    CAS  Google Scholar 

  • Choi, J. H., Suk, S. D., Cho, D., Kim, J. M., Hahn, D., & Cahalan, J. H. (2006). Capsule test for investigating sodium-carbon dioxide interaction. In Proceedings of an International Congress on Advances in Nuclear Power Plants (ICAPP 2006), 4–8 June 2006, Reno, NV, USA (pp. 762–769). Red Hook, NY, USA: Curran Associates, Inc.

    Google Scholar 

  • Cordfunke, E. H. P., & Ouweltjes, W. (1969). The reaction between CO2 and liquid sodium. Journal of Nuclear Materials, 33, 328–332. DOI: 10.1016/0022-3115(69)90030-0.

    Article  CAS  Google Scholar 

  • Das, S. K., Sharma, A. K., Parida, F. C., & Kasinathan, N. (2009). Experimental study on thermo-chemical phenomena during interaction of limestone concrete with liquid sodium under inert atmosphere. Construction and Building Materials, 23, 3375–3381. DOI: 10.1016/j.conbuildmat.2009.06.021.

    Article  Google Scholar 

  • Dostal, V., Driscoll, M. J., & Hejzlar, P. (2004). A supercritical carbon dioxide cycle for next generation nuclear reactors. Cambridge, MA, USA: MIT Center for Advanced Nuclear Energy Systems (CANES). (Advanced Nuclear Power (ANP) Program, MIT-ANP-TR-100).

    Google Scholar 

  • Eckschlager, K., Horsák, I., & Kodejš, Z. (1980). Vyhodnocování analytických výsledků a metod. Prague, Czechoslovakia: SNTL, Alfa.

    Google Scholar 

  • Kozlov, F. A., Kuznetsov, E. K., Vorob’eva, T. A., Ul’mann, K., Reetts, T., & Rikhter, V. (1981). Electrochemical cell for measuring the activity of oxygen in sodium. Atomic Energy, 51, 516–519. DOI: 10.1007/BF01139079.

    Article  Google Scholar 

  • Migliori, A., & Swift, G. W. (1988). Liquid-sodium thermoacoustic engine. Applied Physics Letters, 53, 355–357. DOI: 10.1063/1.99913.

    Article  CAS  Google Scholar 

  • Minczewski, J., Dancewicz, D., & Wasowicz, S. (1962). Determination of traces of oxygen in metallic sodium. Acta Chimica Academiae Scientiarum Hungaricae, 3, 51–57.

    Google Scholar 

  • Rutkauskas, V. J. (1968). Determination of the solubility of oxygen in sodium by vacuum distillation. Los Alamos, CA, USA: Los Alamos Scientific Laboratory of the University of California. (LA-3879).

    Book  Google Scholar 

  • Schreinlechner, I., Sattler, P., & Kozuh, J. (1980). Determination of trace impurities in alkali metals. Microchimica Acta, 74, 423–433. DOI: 10.1007/BF01197610.

    Article  Google Scholar 

  • Simon, N., Latgé, C., & Gicquel, L. (2008). Investigation of sodium-carbon dioxide interactions with calorimetric studies. In Proceedings of an International Congress on Advances in Nuclear Power Plants (ICAPP 2007): The Nuclear Renaissance at Work, 13–18 May 2007, Nice, France (Vol. 5, pp. 2996–3003). Red Hook, NY, USA: Curran Associates, Inc.

    Google Scholar 

  • Subramani, A., Jayanti, S., Shet, U. S. P., & Selvaraj, P. (2009). Dynamics of liquid sodium pool spreading under sodium fire conditions. Nuclear Engineering and Design, 239, 1354–1361. DOI: 10.1016/j.nucengdes.2009.04.002.

    Article  CAS  Google Scholar 

  • U.S. DOE Nuclear Energy Research Advisory Committee (NERAC) and the Generation IV International Forum (GIF) (2002). A technology roadmap for generation IV nuclear energy system. Washington, D.C., USA: NERAC and GIF. (GIF-002-00).

    Google Scholar 

  • Xie, C., Wen, X.-M., Jia, Y.-T., & Sun, S.-P. (2001). Determination of potassium in sodium by flame atomic emission spectroscopy. Spectroscopy and Spectral Analysis, 21, 366–369.

    CAS  Google Scholar 

  • Yamaguchi, A., Takata, T., Ohshima, H., & Kurihara, A. (2009). Thermal influence on steam generator heat transfer tube during sodium-water reaction accident of sodium-cooled fast reactor. Nuclear Technology, 167, 118–126.

    CAS  Google Scholar 

  • Zlámal, J., Polišenský, V., & Kratochvíl, J. (1980). Appliance for cleaning liquid alkali metals. CS Patent No. 212199. Prague, Czechoslovakia: Úřad pro vynálezy a objavy (Industrial Property Office).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Kanický.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaculovič, T., Otruba, V., Matal, O. et al. Determination of carbon in solidified sodium coolant using new ICP-OES methods. Chem. Pap. 65, 620–625 (2011). https://doi.org/10.2478/s11696-011-0054-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0054-x

Keywords

Navigation