Skip to main content
Log in

Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Silicon-based thiourea (SiliaBond® Thiourea) (Si-THU), a heterogeneous catalyst, has been applied to the highly selective C-S bond formation via Michael addition of thiols to α,β-unsaturated carbonyl compounds under solvent-free conditions at 55–60°C. The thio-Michael addition products were obtained in an excellent yield under optimised conditions. This methodology involving a metal-free as well as a metal scavenger catalyst has been found to be an alternative method for the thio-Michael addition reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amini, M. M., Shaabani, A., & Bazgir, A. (2006). Tangstophosphoric acid (H3PW12O40): An efficient and eco-friendly catalyst for the one-pot synthesis of dihydropyrimidin-2(1H)-ones. Catalysis Communications, 7, 843–847. DOI: 10.1016/j.catcom.2006.02.027.

    Article  CAS  Google Scholar 

  • Bandini, M., Cozzi, P. G., Giacomini, M., Melchiorre, P., Selva, S., & Umani-Ronchi, A. (2002). Sequential one-pot InBr3-catalyzed 1,4- then 1,2-nucleophilic addition to enones. Journal of Organic Chemistry, 67, 3700–3704. DOI: 10.1021/jo0163243.

    Article  CAS  Google Scholar 

  • Banerjee, S., Das, J., Alvarez, R. P., & Santra, S. (2010). Silica nanoparticles as a reusable catalyst: a straightforward route for the synthesis of thioethers, thioesters, vinyl thioethers and thio-Michael adducts under neutral reaction conditions. New Journal of Chemistry, 34, 302–306. DOI: 10.1039/B9NJ00399A.

    Article  CAS  Google Scholar 

  • Barahman, M. B., & Pershang, S. (2006). Michael addition of thiols to α,β-unsaturated carbonyl compounds under solventfree conditions. ARKIVOC, 2006(12), 130–137.

    Google Scholar 

  • Chu, C. M., Gao, S., Sastry, M. N. V., & Yao, C.-F. (2005). Iodine-catalyzed Michael addition of mercaptans to α,β-unsaturated ketones under solvent-free conditions. Tetrahedron Letters, 46, 4971–4974. DOI: 10.1016/j.tetlet.2005.05.099.

    Article  CAS  Google Scholar 

  • Falck, J. R., Lai, J.-Y., Cho, S.-D., & Yu, J. (1999). Alkylthioether synthesis via imidazole mediated Mitsunobu condensation. Tetrahedron Letters, 40, 2903–2906. DOI: 10.1016/S0040-4039(99)00390-1.

    Article  CAS  Google Scholar 

  • Firouzabadi, H., Iranpoor, N., Jafarpour, M., & Ghaderi, A. (2006). ZrOCl2 · 8H2O/silica gel as a new efficient and a highly water-tolerant catalyst system for facile condensation of indoles with carbonyl compounds under solvent-free conditions. Journal of Molecular Catalysis A: Chemical, 253, 249–251. DOI: 10.1016/j.molcata.2006.03.043.

    Article  CAS  Google Scholar 

  • Jacobson, K. A. (2009). Functionalized congener approach to the design of ligands for G protein-coupled receptors (GPCRs). Bioconjugate Chemistry, 20, 1816–1835. DOI: 10.1021/bc9000596.

    Article  CAS  Google Scholar 

  • Kanagasabapathy, S., Sudalai, A., & Benicewicz, B. C. (2001). Montmorillonite K 10-catalyzed regioselective addition of thiols and thiobenzoic acids onto olefins: an efficient synthesis of dithiocarboxylic esters. Tetrahedron Letters, 42, 3791–3794. DOI: 10.1016/S0040-4039(01)00570-6.

    Article  CAS  Google Scholar 

  • Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R., & Akkurt, M. (2010). 5-(4-Chlorophenyl)-3-(2-furyl)-1,2,4-triazolo[3,4-a]isoquinoline. Acta Crystallographica E, 66, 1061. DOI: 10.1107/S1600536810012924.

    Article  Google Scholar 

  • Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R., & Ng, S. W. (2009a). 1-(4-Chlorophenyl)-2-phenyl-2-(3-phenyl-1-isoquinolylsulfanyl)ethanone. Acta Crystallographica E, 65, 2732. DOI: 10.1107/S1600536809041282.

    Article  Google Scholar 

  • Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R., & Ng, S. W. (2009b). 2-[2-(Cyclohexylcarbonyl)phenyl]-1-phenylethanone. Acta Crystallographica E, 65, 2745. DOI: 10.1107/S1600536809041270.

    Article  Google Scholar 

  • Khatik, G. L., Sharma, G., Kumar, R., & Chakraborti, A. K. (2007). Scope and limitations of HClO4-SiO2 as an extremely efficient, inexpensive, and reusable catalyst for chemoselective carbon-sulfur bond formation. Tetrahedron, 63, 1200–1210. DOI: 10.1016/j.tet.2006.11.050.

    Article  CAS  Google Scholar 

  • Kondo, T., & Mitsudo, T. (2000). Metal-catalyzed carbon-sulfur bond formation. Chemical Reviews, 100, 3205–3220. DOI: 10.1021/cr9902749.

    Article  CAS  Google Scholar 

  • Kumar, A., & Akanksha (2007). Amino acid catalyzed thio-Michael addition reactions. Tetrahedron, 63, 11086–11092. DOI: 10.1016/j.tet.2007.08.033.

    Article  CAS  Google Scholar 

  • Robinson, J. C., Jr., & Snyder, H. R. (1955). β-phenylethylamine. Organic Syntheses, Collective Volume 3, 720.

    Google Scholar 

  • Perrier, S., & Tokolpuckdee, P. (2005). Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 43, 5347–5393. DOI: 10.1002/pola.20986.

    Article  CAS  Google Scholar 

  • Prabakaran, K., & Khan, F. N. (2010). Basic alumina-catalyzed, solvent-free synthesis of diversified thioethers. Phosphorus, Sulfur, and Silicon and the Related Elements, 185, 825–831. DOI: 10.1080/10426500902998131.

    Article  CAS  Google Scholar 

  • Ranu, B. C., & Dey, S. S. (2004). Catalysis by ionic liquid: a simple, green and efficient procedure for the Michael addition of thiols and thiophosphate to conjugated alkenes in ionic liquid, [pmIm]Br. Tetrahedron, 60, 4183–4188. DOI: 10.1016/j.tet.2004.03.052.

    Article  CAS  Google Scholar 

  • Salvatore, R. N., Smith, R. A., Nischwitz, A. K., & Gavin, T. (2005). A mild and highly convenient chemoselective alkylation of thiols using Cs2CO3-TBAI. Tetrahedron Letters, 46, 8931–8935. DOI: 10.1016/j.tetlet.2005.10.062.

    Article  CAS  Google Scholar 

  • Sudalai, A., Kanagasabapathy, S., & Benicewicz, B. C. (2000). Phosphorus pentasulfide: A mild and versatile catalyst/reagent for the preparation of dithiocarboxylic esters. Organic Letters, 2, 3213–3216. DOI: 10.1021/ol006407q.

    Article  CAS  Google Scholar 

  • Thang, S. H., Chong, (B.) Y. K., Mayadunne, R. T. A., Moad, G., & Rizzardo, E. (1999). A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates. Tetrahedron Letters, 40, 2435–2438. DOI: 10.1016/S0040-4039(99)00177-X.

    Article  CAS  Google Scholar 

  • Wight, A. P., & Davis, M. E. (2002). Design and preparation of organic-inorganic hybrid catalysts. Chemical Reviews, 102, 3589–3614. DOI: 10.1021/cr010334m.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fazlur-Rahman Nawaz Khan or Jong Sung Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabakaran, K., Gund, M., Kim, T.K. et al. Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions. Chem. Pap. 65, 707–713 (2011). https://doi.org/10.2478/s11696-011-0052-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0052-z

Keywords

Navigation