Chemical Papers

, Volume 65, Issue 4, pp 406–411 | Cite as

Interaction of Moringa oleifera seed lectin with humic acid

  • Andréa F. S. Santos
  • Maria G. Carneiro-da-Cunha
  • José A. Teixeira
  • Patrícia M. G. Paiva
  • Luana C. B. B. Coelho
  • Regina Nogueira
Article

Abstract

The aim of this work was to characterise the affinity of protein preparations from Moringa oleifera seeds, specifically extract (seeds homogenised with 0.15 M NaCl), fraction (extract precipitated with 390 mg mL−1 of ammonium sulphate) and cMoL (coagulant M. oleifera lectin) to bind humic acids using a haemagglutinating activity assay with rabbit erythrocytes and a radial diffusion assay in agarose gel. Specific haemagglutinating activity (SHA) decreased by 94 % for the extract and cMoL and by 50 % for the fraction in the presence of humic acid. Precipitation bands were observed in the diffusion gel. Both results suggested humic acid-cMoL binding. Carbohydrates, potassium, and calcium ions and pH affected the SHA of cMoL. As an example of application, cMoL was immobilised on a column packed with sepharose receiving 20 mg mL−1 of carbon humic acid solution, 30 mg of humic acid per gram of support was removed. This result suggested that protein preparations might be used in water treatment to remove humic acids.

Keywords

humic acid lectin Moringa oleifera protein preparations water treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aniulyte, J., Liesiene, J., & Niemeyer, B. (2006). Evaluation of cellulose-based biospecific adsorbents as a stationary phase for lectin affinity chromatography. Journal of Chromatography B, 831, 24–30. DOI: 10.1016/j.jchromb.2005.11.016.CrossRefGoogle Scholar
  2. Barreto, S. R. G., Nozaki, J., & Barreto, W. J. (2003). Origin of dissolved organic carbon studied by UV-vis spectroscopy. Acta Hydrochimica et Hydrobiologica, 31, 513–518. DOI: 10.1002/aheh.200300510.CrossRefGoogle Scholar
  3. Correia, M. T. S., & Coelho, L. C. B. B. (1995). Purification of a glucose/mannose specific lectin, isoform 1, from seeds of Cratylia mollis mart. (Camaratu bean). Applied Biochemistry and Biotechnology, 55, 261–273. DOI: 10.1007/BF02786865.CrossRefGoogle Scholar
  4. Correia, M. T. S., Coelho, L. C. B. B., & Paiva, P. M. G. (2008). Lectins, carbohydrate recognition molecules: Are they toxic? Recent Trends in Toxicology, 37, 47–59.Google Scholar
  5. Del Sol, F. G., Cavada, B. S., & Calvete, J. J. (2007). Crystal structures of Cratylia floribunda seed lectin at acidic and basic pHs. Insights into the structural basis of the pHdependent dimer-tetramer transition. Journal of Structural Biology, 158, 1–9. DOI: 10.1016/j.jsb.2006.08.014.CrossRefGoogle Scholar
  6. Eish, M. Y. Z. A., & Wells, M. J. M. (2006). Assessing the trihalomethane formation potential of aquatic fulvic and humic acids fractionated using thin-layer chromatography. Journal of Chromatography A, 1116, 272–276. DOI: 10.1016/j.chroma.2006.03.064.CrossRefGoogle Scholar
  7. Elgavish, S., & Shaanan, B. (1997). Lectin-carbohydrate interactions: different folds, common recognition principles. Trends in Biochemical Sciences, 22, 462–467. DOI: 10.1016/S0968-0004(97)01146-8.CrossRefGoogle Scholar
  8. Favacho, A. R. M., Cintra, E. A., Coelho, L. C. B. B., & Linhares, M. I. S. (2007). In vitro activity evaluation of Parkia pendula seed lectin against human cytomegalovirus and herpes virus 6. Biologicals, 35, 189–194. DOI: 10.1016/j.biologicals.2006.09.005.CrossRefGoogle Scholar
  9. Fraguas, L. F., Batista-Viera, F., & Carlsson, J. (2004). Preparation of high-density Concanavalin A adsorbent and its use for rapid, high-yield purification of peroxidase from horseradish roots. Journal of Chromatography B, 803, 237–241. DOI: 10.1016/j.jchromb.2003.12.023.CrossRefGoogle Scholar
  10. Franco-Fraguas, L., Plá, A., Ferreira, F., Massaldi, H., Suárez, N., & Batista-Viera, F. (2003). Preparative purification of soybean agglutinin by affinity chromatography and its immobilization for polysaccharide isolation. Journal of Chromatography B, 790, 365–372. DOI: 10.1016/S1570-0232(03)00086-2.CrossRefGoogle Scholar
  11. Ghebremichael, K. A., Gunaratna, K. R., Henriksson, H., Brumer, H., & Dalhammar, G. (2005). A simple purification and activity assay of the coagulant protein from Moringa oleifera seed. Water Research, 39, 2338–2344. DOI: 10.1016/j.watres.2005.04.012.CrossRefGoogle Scholar
  12. Grazu, V., Betancor, L., Montes, T., Lopez-Gallego, F., Guisan, J. M., & Fernandez-Lafuente, R. (2006). Glyoxyl agarose as a new chromatographic matrix. Enzyme and Microbial Technology, 38, 960–966. DOI: 10.1016/j.enzmictec.2005.08.034.CrossRefGoogle Scholar
  13. Kaur, A., Singh, J., Kamboj, S. S., Sexana, A. K., Pandita, R. M., & Shamnugavel, M. (2005). Isolation of an N-acetyl-D-glucosamine specific lectin from the rhizomes of Arundo donax with antiproliferative activity. Phytochemistry, 66, 1933–1940. DOI: 10.1016/j.phytochem.2005.06.026.CrossRefGoogle Scholar
  14. Kelly, L. S., Kozak, M., Walker, T., Pierce, M., & Puett, D. (2005). Lectin immunoassays using antibody fragments to detect glycoforms of human chorionic gonadotropin secreted by choriocarcinoma cells. Analytical Biochemistry, 338, 253–262. DOI: 10.1016/j.ab.2004.12.011.CrossRefGoogle Scholar
  15. Kumari, P., Sharma, P., Srivastava, S., & Srivastava, M. M. (2006). Biosorption studies on shelled Moringa oleifera Lamarck seed powder: Removal and recovery of arsenic from aqueous system. International Journal of Mineral Processing, 78, 131–139. DOI: 10.1016/j.minpro.2005.10.001.CrossRefGoogle Scholar
  16. Le-Clech, P., Lee, E.-K., & Chen, V. (2006). Hybrid photocatalysis/membrane treatment for surface waters containing low concentrations of natural organic matters. Water Research, 40, 323–330. DOI: 10.1016/j.watres.2005.11.011.CrossRefGoogle Scholar
  17. Lima, V. L. M., Correia, M. T. S., Cechinel, Y. M. N., Sampaio, C. A. M., Owen, J. S., & Coęlho, L. C. B. B. (1997). Immobilized Cratylia mollis lectin as a potential matrix to isolate plasma glycoproteins, including lecithin-cholesterol acyltransferase. Carbohydrate Polymers, 33, 27–32. DOI: 10.1016/S0144-8617(97)00034-9.CrossRefGoogle Scholar
  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.Google Scholar
  19. Maciel, E. V. M., Araújo-Filho, V. S., Nakazawa, M., Gomes, Y. M., Coelho, L. C. B. B., & Correia, M. T. S. (2004). Mitogenic activity of Cratylia mollis lectin on human lymphocytes. Biologicals, 32, 57–60. DOI: 10.1016/j.biologicals.2003.12.001.CrossRefGoogle Scholar
  20. Matilainen, A., Vieno, N., & Tuhkanen, T. (2006). Efficiency of the activated carbon filtration in the natural organic matter removal. Environment International, 32, 324–331. DOI: 10.1016/j.envint.2005.06.003.CrossRefGoogle Scholar
  21. Monzo, A., Bonn, G. K., & Guttman, A. (2007). Lectinimmobilization strategies for affinity purification and separation of glycoconjugates. TrAC Trends in Analytical Chemistry, 26, 423–432. DOI: 10.1016/j.trac.2007.01.018.CrossRefGoogle Scholar
  22. Moriguchi, T., Yano, K., Tahara, M., & Yaguchi, K. (2005). Metal-modified silica adsorbents for removal of humic substances in water. Journal of Colloid and Interface Science, 283, 300–310. DOI: 10.1016/j.jcis.2004.09.019.CrossRefGoogle Scholar
  23. Okuda, T., Baes, A. U., Nishijima, W., & Okada, M. (1999). Improvement of extraction method of coagulation active components from Moringa oleifera seed. Water Research, 33, 3373–3378. DOI: 10.1016/S0043-1354(99)00046-9.CrossRefGoogle Scholar
  24. Paiva, P. M. G., Souza, A. F., Oliva, M. L. V., Kennedy, J. F., Cavalcanti, M. S. M., Coelho, L. C. B. B., & Sampaio, C. A. M. (2003). Isolation of a trypsin inhibitor from Echinodorus paniculatus seeds by affinity chromatography on immobilized Cratylia mollis isolectins. Bioresource Technology, 88, 75–79. DOI: 10.1016/S0960-8524(02)00272-9.CrossRefGoogle Scholar
  25. Pedroso, M. M., Watanabe, A. M., Roque-Barreira, M. C., Bueno, P. R., & Faria, R. C. (2008). Quartz Crystal Microbalance monitoring the real-time binding of lectin with carbohydrate with high and low molecular mass. Microchemical Journal, 89, 153–158. DOI: 10.1016/j.microc.2008.02.001.CrossRefGoogle Scholar
  26. Peumans, W. J., & Van Damme, E. J. M. (1995). Lectins as plant defense proteins. Plant Physiology, 109, 347–352. DOI: 10.1104/pp.109.2.347.CrossRefGoogle Scholar
  27. Pritchard, M., Craven, T., Mkandawire, T., Edmondson, A. S., & O’Neill, J. G. (2010). A comparison between Moringa oleifera and chemical coagulants in the purification of drinking water — An alternative sustainable solution for developing countries. Physics and Chemistry of the Earth, Parts A/B/C, 35, 798–805. DOI: 10.1016/j.pce.2010.07.014.CrossRefGoogle Scholar
  28. Rameshwaram, N. R., & Nadimpalli, S. K. (2008). An efficient method for the purification and quantification of a galactose-specific lectin from vegetative tissues of Dolichos lablab. Journal of Chromatography B, 861, 209–217. DOI: 10.1016/j.jchromb.2007.09.020.CrossRefGoogle Scholar
  29. Sánchez-Monedero, M. A., Roig, A., Cegarra, J., & Bernal, M. P. (1999). Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting. Bioresource Technology, 70, 193–201. DOI: 10.1016/S0960-8524(99)00018-8.CrossRefGoogle Scholar
  30. Santos, A. F. S., Argolo, A. C. C., Coelho, L. C. B. B., & Paiva, P. M. G. (2005). Detection of water soluble lectin and antioxidant component from Moringa oleifera seeds. Water Research, 39, 975–980. DOI: 10.1016/j.watres.2004.12.016.CrossRefGoogle Scholar
  31. Santos, A. F. S., Luz, L. A., Argolo, A. C. C., Teixeira, J. A., Paiva, P. M. G., & Coelho, L. C. B. B. (2009). Isolation of a seed coagulant Moringa oleifera lectin. Process Biochemistry, 44, 504–408. DOI: 10.1016/j.procbio.2009.01.002.CrossRefGoogle Scholar
  32. Scott, B. F., MacTavish, D., Spencer, C., Strachan, W. M. J., & Muir, D. C. G. (2000). Haloacetic acids in Canadian lake waters and precipitation. Environmental Science & Technology, 34, 4266–4272. DOI: 10.1021/es9908523.CrossRefGoogle Scholar
  33. Shin, H.-S., Monsallier, J. M., & Choppin, G. R. (1999). Spectroscopic and chemical characterizations of molecular size fractionated humic acid. Talanta, 50, 641–647. DOI: 10.1016/S0039-9140(99)00161-7.CrossRefGoogle Scholar
  34. Shirshova, L. T., Ghabbour, E. A., & Davies, G. (2006). Spectroscopic characterization of humic acid fractions isolated from soil using different extraction procedures. Geoderma, 133, 204–216. DOI: 10.1016/j.geoderma.2005.07.007.CrossRefGoogle Scholar
  35. Wong, J. H., & Ng, T. B. (2006). Isolation and characterization of a glucose/mannose-specific lectin with stimulatory effect on nitric oxide production by macrophages from the emperor banana. The International Journal of Biochemistry & Cell Biology, 38, 234–243. DOI: 10.1016/j.biocel.2005.09.004.CrossRefGoogle Scholar
  36. Xu, D., Zhu, S., Chen, H., & Li, F. (2006). Structural characterization of humic acids isolated from typical soils in China and their adsorption characteristics to phenanthrene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 276, 1–7. DOI: 10.1016/j.colsurfa.2005.09.038.CrossRefGoogle Scholar
  37. Yan, M., Wang, D., You, S., Qu, J., & Tang, H. (2006). Enhanced coagulation in a typical North-China water treatment plant. Water Research, 40, 3621–3627. DOI: 10.1016/j. watres.2006.05.044.CrossRefGoogle Scholar
  38. Yan, Q., Jiang, Z., Yang, S., Deng, W., & Han, L. (2005). A novel homodimeric lectin from Astragalus mongholicus with antifungal activity. Archives of Biochemistry and Biophysics, 442, 72–81. DOI: 10.1016/j.abb.2005.07.019.CrossRefGoogle Scholar
  39. Zhou, P., Yan, H., & Gu, B. (2005). Competitive complexation of metal ions with humic substances. Chemosphere, 58, 1327–1337. DOI: 10.1016/j.chemosphere.2004.10.017.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2011

Authors and Affiliations

  • Andréa F. S. Santos
    • 1
  • Maria G. Carneiro-da-Cunha
    • 2
  • José A. Teixeira
    • 1
  • Patrícia M. G. Paiva
    • 2
  • Luana C. B. B. Coelho
    • 2
  • Regina Nogueira
    • 1
  1. 1.IBB-Institute for Biotechnology and Bioengineering, Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  2. 2.Centro de Cięencias Biológicas, Departamento de BioquímicaUniversidade Federal de PernambucoRecife-PEBrazil

Personalised recommendations