Abstract
Zeolite-based photocatalysts were prepared by the sol-gel and deposition methods. The photocatalysts were characterised by X-ray diffraction, nitrogen adsorption-desorption isotherms, FTIR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectrometry. The activity of the prepared photocatalysts was evaluated by the UV-induced degradation of acid blue 92, a textile dye in common use. The effect of various parameters, such as catalyst concentration, initial dye concentration, thiosulphate concentration and pH, on the rate and efficiency of the photocatalytic degradation of acid blue 92 was investigated. The results showed that each parameter influenced the degradation rate and efficiency in a particular way. It was also found that, under optimised conditions, Ag/AgBr/TiO2/zeolite exhibited the highest photocatalytic performance. A comparison of catalytic activity when exposed to visible light under the same conditions showed that the photocatalysts containing AgBr had the highest activity.
This is a preview of subscription content, access via your institution.
Similar content being viewed by others
References
Anandan, S., & Yoon, M. (2003). Photocatalytic activities of the nano-sized TiO2 supported Y-zeolites. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 5–18. DOI: 10.1016/S1389-5567(03)00002-9.
Ao, C. H., & Lee, S. C. (2004). Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level. Journal of Photochemistry and Photobiology A: Chemistry, 161, 131–140. DOI: 10.1016/S1010-6030(03)00276-4.
Behar, D., & Fessenden, R. W. (1971). An investigation of radicals produced in the photolysis of thiosulfate solutions by electron spin resonance. Journal of Physical Chemistry, 75, 2752–2755. DOI: 10.1021/j100687a007.
Cao, J. J. (2004). Study on crystal structure of modified mordenite. Spectroscopy and Spectral Analysis, 24, 251–254. (in Chinese)
Chen, C.-Y. (2009). Photocatalytic degradation of azo dye reactive orange 16 by TiO2. Water, Air & Soil Pollution, 202, 335–342. DOI: 10.1007/s11270-009-9980-4.
Druschel, G. K., Hamers, R. J., Luther, G. W., & Banfield, J. F. (2003). Kinetics and mechanism of trithionate and tetrathionate oxidation at low pH by hydroxyl radicals. Aquatic Geochemistry, 9, 145–164. DOI: 10.1023/B:AQUA.0000019495.91752.d7.
Elahifard, M. R., Rahimnejad, S., Haghighi, S., & Gholami, M. R. (2007). Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria. Journal of the American Chemical Society, 129, 9552–9553. DOI: 10.1021/ja072492m.
Fernández, A., Lassaletta, G., Jiménez, V. M., Justo, A., González-Elipe, A. R., Herrmann, J.-M., Tahiri, H., & Ait-Ichou, Y. (1995). Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Applied Catalysis B: Environmental, 7, 49–63. DOI: 10.1016/0926-3373(95)00026-7.
Gao, J., Li, S., Yang, W., Zhao, G., Bo, L., & Song, L. (2007). Preparation and photocatalytic activity of PANI/TiO2 composite film. Rare Metals, 26, 1–7. DOI: 10.1016/S1001-0521(07)60018-7.
Ghasemi, S., Rahimnejad, S., Rahman Setayesh, S., Hosseini, M., & Gholami, M. R. (2009a). Kinetic investigation of the photocatalytic degradation of acid blue 92 in aqueous solution using nanocrystalline TiO2 prepared in an ionic liquid. Progress in Reaction Kinetics and Mechanism, 34, 55–76. DOI: 10.3184/146867809X413247.
Ghasemi, S., Rahimnejad, S., Rahman Setayesh, S., Rohani, S., & Gholami, M. R. (2009b). Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. Journal of Hazardous Materials, 172, 1573–1578. DOI: 10.1016/j.jhazmat.2009.08.029.
Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J., & Wu, J. (2008). Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes and Pigments, 77, 327–334. DOI: 10.1016/j.dyepig.2007.01.026.
Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 49, 1–14. DOI: 10.1016/j.apcatb.2003.11.010.
Korkuna, O., Leboda, R., Skubiszewska-Zięba, J., Vrublevska, T., Gunko, V. M., & Ryczkowski, J. (2005). Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous and Mesoporous Materials, 87, 243–254. DOI: 10.1016/j.micromeso.2005.08.002.
Li, F., Jiang, Y., Yu, L., Yang, Z., Hou, T., & Sun, S. (2005). Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2. Applied Surface Science, 252, 1410–1416. DOI: 10.1016/j.apsusc.2005.02.111.
Majdan, M., Kowalska-Ternes, M., Pikus, S., Staszczuk, P., Skrzypek, H., & Zięba, E. (2003). Vibrational and scanning electron microscopy study of the mordenite modified by Mn, Co, Ni, Cu, Zn and Cd. Journal of Molecular Structure, 649, 279–285. DOI: 10.1016/S0022-2860(03)00082-6.
Ooka, C., Yoshida, H., Suzuki, K., & Hattori, T. (2004). Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water. Microporous and Mesoporous Materials, 67, 143–150. DOI: 10.1016/j.micromeso.2003.10.011.
Patterson, H. H., Gomez, R. S., Lu, H., & Yson, R. L. (2007). Nanoclusters of silver doped in zeolites as photocatalyst. Catalysis Today, 120, 168–173. DOI: 10.1016/j.cattod.2006.07.057.
Rashed, M. N., & El-Amin, A. A. (2007). Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources. International Journal of Physical Sciences, 2, 73–81.
Robert, D., Piscopo, A., Heintz, O., & Weber, J. V. (1999). Photocatalytic detoxification with TiO2 supported on glass-fibre by using artificial and natural light. Catalysis Today, 54, 291–296. DOI: 10.1016/S0920-5861(99)00190-X.
Ševčík, P., Čík, G., Vlna, T., & Mackuľak, T. (2009). Preparation and properties of a new composite photocatalyst based on nanosized titanium dioxide. Chemical Papers, 63, 249–254. DOI: 10.2478/s11696-008-0101-4.
Sleiman, M., Vildozo, D., Ferronato, C., & Chovelon, J.-M. (2007). Photocatalytic degradation of azo dye metanil yellow: Optimization and kinetic modeling using a chemometric approach. Applied Catalysis B: Environmental, 77, 1–11. DOI: 10.1016/j.apcatb.2007.06.015.
Xu, Y., & Langford, C. H. (1997). Photoactivity of titanium dioxide supported on MCM41, zeolite X, and zeolite Y. Journal of Physical Chemistry B, 101, 3115–3121. DOI: 10.1021/jp962494l.
Xu, Y., & Langford, C. H. (1995). Enhanced photoactivity of a titanium(IV) oxide supported on ZSM5 and zeolite A at low coverage. Journal of Physical Chemistry, 99, 11501–11507. DOI: 10.1021/j100029a031.
Zielińska, B., & Morawski, A. W. (2005). TiO2 photocatalysts promoted by alkali metals. Applied Catalysis B: Environmental, 55, 221–226. DOI: 10.1016/j.apcatb.2004.08.015.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Padervand, M., Tasviri, M. & Gholami, M.R. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite. Chem. Pap. 65, 280–288 (2011). https://doi.org/10.2478/s11696-011-0013-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11696-011-0013-6