Skip to main content

Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions

Abstract

Some mixed ligand complexes containing 2-methylbenzimidazole and thiocyanate ion were synthesized. Free ligands and their metal complexes were characterized using elemental analysis, determination of metal, magnetic susceptibility, molar conductivity, infrared, UV-VIS, and (1H, 13C) NMR spectra, and X-ray structure analysis. The results suggest that the Ag(I) complex has linear geometry, Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) have tetrahedral geometry, Pd(II) complex has square planar geometry, VO(IV) square pyramidal geometry, Pb(II) irregular tetrahedral geometry, and that the Cr(III) and Mn(II) complexes have octahedral geometry. The following general formulae were proposed for the prepared complexes: [AgBX], [CrB3X3], (HB)2[MnB2X4] · 2B and [MB2X2], where B = 2-methylbenzimidazole, HB = 2-methylbenzimidazolium, X = thiocyanate ion, and M = VO(IV), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), and Pb(II). Molar conductance of a 10−3 M solution in N,N-dimethyl formamide (DMF) indicates that all the complexes are non-electrolytes except the Mn(II) complex which is an electrolyte because the molar conductivity of its solution in DMF is high.

This is a preview of subscription content, access via your institution.

References

  • Aljanabi, M. Y. (1983). The physical methods in inorganic chemistry. Baghdad, Iraq: University of Baghdad.

    Google Scholar 

  • Barbour, L. J. (2001). X-Seed — A software tool for supramolecular crystallography. Journal of Supramolecular Chemistry, 1, 189–191. DOI: 10.1016/S1472-7862(02)00030-8.

    Article  CAS  Google Scholar 

  • Bélanger, S., Fortin, S., & Beauchamp, A. L. (1997). Rhenium(V) complexes with benzimidazole (BzimH) and crystal structure of the hemiprotonated compound [ReO2(BzimH)4] [ReO(OH)(BzimH)4](ReO4)3. Canadian Journal of Chemistry, 75, 37–45. DOI: 10.1139/v97-005.

    Article  Google Scholar 

  • Bruker (2006). APEX2 (version 1.2 A) and SAINT (version 7.23 A). Madison, WI, USA: Bruker AXS Inc.

    Google Scholar 

  • Cotton, F. A., & Wilkinson, G. (1998). Advanced inorganic chemistry. New York, NY, USA: Wiley.

    Google Scholar 

  • Cross, A. D., & Alan, J. (1969). An introduction to practical infrared spectroscopy (3 ed.). London, UK: Butterworths.

    Google Scholar 

  • Day, M. C., & Selbin, J. (1983). Theoretical inorganic chemistry. New York, NY, USA: Reinhold.

    Google Scholar 

  • Dunn, T. M. (1960). The visible and ultraviolet spectra of complex compounds. In J. Lewis & R. G. Wilkins (Eds.), Modern coordination chemistry (pp. 229–300). New York, NY, USA: Interscience.

    Google Scholar 

  • Duward, F. S., & Atkins, P. W. (1990). Inorganic chemistry. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Dyer, R. J. (1965). Applications of absorption spectroscopy of organic compounds. Englewood Cliffs, NJ, USA: Prentice-Hall.

    Google Scholar 

  • Ehssan, A. (1988). Inorganic and coordination chemistry. Mousel, Iraq: Mousel University.

    Google Scholar 

  • Haggag, S. S. (2007). Spectral and thermal characterization of newly synthesized arylazo benzimidazole mercury(II) complexes. Indian Journal of Chemistry, 46A, 582–588.

    CAS  Google Scholar 

  • Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., & Fanwick, P. E. (2002). Synthesis and characterization of anionic transition metal isothiocyanate complexes prepared from metal powders and thiourea. Inorganica Chimica Acta, 338, 99–104. DOI: 10.1016/S0020-1693(02)00903-9.

    Article  CAS  Google Scholar 

  • Huheey, J. E. (1972). Inorganic chemistry: Principles of structure and reactivity. New York, NY, USA: Harper & Row.

    Google Scholar 

  • Lever, A. B. P. (1968). Inorganic electronic spectroscopy. New York, NY, USA: Elsevier.

    Google Scholar 

  • Lutfullah, Umar, A., Rahman, M. M., Khan, M. M., & Hahn, Y. B. (2007). Synthesis and physico-chemical and spectroscopic investigations of sodium dihydrobis(1,2,3-benzotriazolyl)borate ligand and its transition metal complexes. Turkish Journal of Chemistry, 31, 179–189.

    CAS  Google Scholar 

  • Nagawande, R. R., & Shinde, D. B. (2006). BF3·OEt2 promoted solvent-free synthesis of benzimidazole derivatives. Chinese Chemical Letters, 17, 453–456.

    Google Scholar 

  • Nakamoto, K. (1995). Infrared spectra of inorganic and coordination compounds. New York, NY, USA: Wiley.

    Google Scholar 

  • Nicholls, D. (1973). Complexes and first row transition elements. London, UK: Macmillan Press.

    Google Scholar 

  • O’Leary, M. H. (1976). Contemporary organic chemistry. New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Overberger, C. G., St. Pierre, T., Vorchheimer, N., Lee, J., & Yaroslavsky, S. (1965). The enhanced esterolytic catalysis of poly-4 (5)-vinylimidazole and poly-5 (6)-vinylbenzimidazole. Journal of the American Chemical Society, 87, 296–301. DOI: 10.1021/ja01080a028.

    Article  CAS  Google Scholar 

  • Quaglian, J. V., Fujita, J., Franz, G., Phillips, D. J., Walmsley, J. A., & Tyree, S. Y. (1961). The donor properties of pyridine N-oxide. Journal of the American Chemical Society, 83, 3770–3773. DOI: 10.1021/ja01479a009.

    Article  Google Scholar 

  • Rabiger, D. J., & Joullié, M. M. (1964). The ionization constants, ultraviolet and infrared spectra of some substituted benzimidazoles. Journal of Organic Chemistry, 29, 476–482. DOI: 10.1021/jo01025a502.

    Article  CAS  Google Scholar 

  • Rocha, R. C., Rein, F. N., & Toma, H. E. (2001). Ruthenium and iron complexes with benzotriazole and benzimidazole derivatives as simple models for proton-coupled electron transfere systems. Journal of the Brazilian Chemical Society, 12, 234–242. DOI: 10.1590/S0103-50532001000200018.

    Article  CAS  Google Scholar 

  • Shayma, A. S. (2010). Preparation and study of some Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) complexes containing heterocyclic nitrogen donor ligands. E-Journal of Chemistry, 7, 1598–1604.

    Google Scholar 

  • Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, 64, 112–122. DOI: 10.1107/S0108767307043930.

    Article  Google Scholar 

  • Sundburg, R. J., Shepherd, R. F., & Taube, H. (1972). Carbonbound imidazolium ylides as ligands in ruthenium(II) and ruthenium(III) complexes. Journal of the American Chemical Society, 94, 6558–6559. DOI: 10.1021/ja00773a600.

    Article  Google Scholar 

  • Téllez, F., López-Sandoval, H., Castillo-Blum, S. E., & Barba-Behrens, N. (2008). Coordination behavior of benzimidazole, 2-substituted benzimidazoles and benzothiazoles, towards transition metal ions. ARKIVOC, 2008(v), 245–275.

    Google Scholar 

  • Williams, D. H., & Fleming, I. (1973). Spectroscopic methods in organic chemistry (2nd ed.). London, UK: McGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shayma A. Shaker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shaker, S.A., Khaledi, H. & Ali, H.M. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions. Chem. Pap. 65, 299–307 (2011). https://doi.org/10.2478/s11696-011-0003-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0003-8

Keywords

  • 2-methylbenzimidazole complexes
  • thiocyanate complexes
  • mixed-ligand complexes
  • spectroscopic studies