Skip to main content
Log in

Effect of fiber modification with carboxymethyl cellulose on the efficiency of a microparticle flocculation system

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Carboxymethyl cellulose (CMC) has been used widely to enhance dry strength of paper and uniformity of sheet in the papermaking industry. Besides these positive effects, it may affect the fines retention and dewatering processes negatively. These negative effects are mainly seen when fiber modifications with high CMC dosages are studied in laboratory scale. In this paper, the effect of fiber modification with CMC on the deposition of precipitated calcium carbonate (PCC) and on the dewatering process in the presence of cationic polyacrylamide (CPAM)/bentonite microparticle flocculation system is examined. It was determined that fiber modification with 10 mg g−1 of CMC decreased PCC deposition at the initial addition of CPAM and gave better PCC deposition at 2 mg g−1 of CPAM. It was also observed that PCC deposition on unmodified fibers is higher at lower CPAM concentration. PCC deposition was found as almost stable after a maximum value obtained at 0.5 mg g−1 of bentonite concentration for fiber modified with 40 mg g−1 of CMC. This indicates that interaction between CPAM and bentonite particles changed due to higher surface charge and CMC conformation on fibers. Results of the dewatering experiments showed that CMC modification increased the drainage time due to a denser and more plugged sheet. This negative effect was compensated with higher concentrations of CPAM and bentonite. On the other hand, dewatering is also affected by the mass ratio of CMC and CPAM, which was not the optimum one in this study at lower of CPAM. Thus, the increase in the drainage time in the presence of CMC on the fiber surface could be also caused by incorrect ratios of chemicals because the effect of CMC on the drainage time was not observed at higher concentrations of CPAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alince, B., Bednar, F., & van de Ven, T. G. M. (2001). Deposition of calcium carbonate particles on fiber surfaces induced by cationic polyelectrolyte and bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 190, 71–81. DOI: 10.1016/S0927-7757(01)00666-5.

    Article  CAS  Google Scholar 

  • Asselman, T., & Garnier, G. (2000). The role of anionic microparticles in a poly(acrylamide)-montmorillonite flocculation aid system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 170, 79–90. DOI: 10.1016/S0927-7757(00)00487-8.

    Article  CAS  Google Scholar 

  • Blomstedt, M., & Vuorinen, T. (2007). Modification of softwood kraft pulp with carboxymethyl cellulose and cationic surfactants. Journal of Wood Science, 53, 223–228. DOI: 10.1007/s10086-006-0856-6.

    Article  CAS  Google Scholar 

  • Kontturi, E., Mitikka-Eklund, M., & Vuorinen, T. (2008). Strength enhancement of a fiber network by carboxymethyl cellulose during oxygen delignification of kraft pulp. BioResources, 3, 34–45.

    CAS  Google Scholar 

  • Lee, P. F. W., & Lindstrom, T. (1989). Effects of high molecular mass anionic polymers on paper sheet formation. Nordic Pulp & Paper Research Journal, 4, 61–70. DOI: 10.3183/NPPRJ-1989-04-02-p061-070.

    Article  CAS  Google Scholar 

  • Liimatainen, H., Haavisto, S., Haapala, A., & Niinimäki, J. (2009). Influence of adsorbed and dissolved carboxymethyl cellulose on fibre suspension dispersing, dewaterability, and fines retention. BioResources, 4, 321–340.

    CAS  Google Scholar 

  • Norell, M., Johansson, K., & Persson, M. (1999). Retention and drainage. In L. Neimo (Ed.), Papermaking Chemistry (pp. 42–81). Helsinki, Finland; Fapet Oy.

    Google Scholar 

  • Ondaral, S., Usta, M., Gumusderelioglu, M., Arsu, N., & Balta, D. K. (2010). The synthesis of water soluble cationic microgels by dispersion polymerization: Their performance in kaolin deposition onto fiber. Journal of Applied Polymer Science, 116, 1157–1164. DOI: 10.1002/app.31665.

    CAS  Google Scholar 

  • Ono, H., & Deng, Y. (1997). Flocculation and retention of precipitated calcium carbonate by cationic polymeric microparticle flocculants. Journal of Colloid and Interface Science, 188, 183–192. DOI: 10.1006/jcis.1997.4766.

    Article  CAS  Google Scholar 

  • Ovenden, C., & Xiao, H. (2002). Flocculation behaviour and mechanisms of cationic inorganic microparticle/polymer systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 197, 225–234. DOI: 10.1016/S0927-7757(01)00903-7.

    Article  CAS  Google Scholar 

  • TAPPI (2002). Laboratory beating of pulp (valley beater method). T 200 sp-96. TAPPI test methods. Atlanta, GA, USA: Tappi Press.

    Google Scholar 

  • Van de Steeg, H. G. M., Stuart, M. A. C., De Keizer, A., & Bijsterbosch, B. H. (1992). Polyelectrolyte adsorption: A subtle balance of forces, Langmuir, 8, 2538–2546. DOI: 10.1021/la00046a030.

    Article  Google Scholar 

  • Wågberg, L., Ondaral, S., & Enarsson, L.-E. (2007). Hyperbranched polymers as a fixing agent for dissolved and colloidal substances on fiber and SIO2 surfaces. Industrial & Engineering Chemistry Research, 46, 2212–2219. DOI: 10.1021/ie061108b.

    Article  Google Scholar 

  • Watanabe, M., Gondo, T., & Kitao, O. (2004). Advanced wetend system with carboxymethylcellulose. Tappi Journal, 3, 15–19.

    CAS  Google Scholar 

  • Yan, H. T., Lindström, T., & Christiernin, M. (2006). Some ways to decrease fiber suspension flocculation and improve sheet formation. Nordic Pulp & Paper Research Journal, 21, 36–43. DOI: 10.3183/NPPRJ-2006-21-01-p036-043.

    Article  CAS  Google Scholar 

  • Yan, Z., & Deng, Y. (2000). Cationic microparticle based flocculation and retention systems. Chemical Engineering Journal, 80, 31–36. DOI: 10.1016/S1383-5866(00)00074-5.

    Article  CAS  Google Scholar 

  • Zemljič, L. F., Stenius, P., Laine, J., Stana-Kleinschek, K., & Ribitsch, V. (2006). Characterization of cotton fibers modified by carboxymethyl cellulose. Lenzinger Berichte, 85, 68–76.

    Google Scholar 

  • Zhao, R. H., & Kerekes, R. J. (1993). The effect of suspending liquid viscosity on fiber flocculation. Tappi Journal, 76, 183–188.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedat Ondaral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ondaral, S., Kurtuluş, O.Ç. & Usta, M. Effect of fiber modification with carboxymethyl cellulose on the efficiency of a microparticle flocculation system. Chem. Pap. 65, 16–22 (2011). https://doi.org/10.2478/s11696-010-0090-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0090-y

Keywords

Navigation