Skip to main content

Advertisement

Log in

Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A number of poly(N-isopropylacrylamide) (polyNIPAM) microgels were prepared with dimethacrylate cross-linking agents of various lengths, ether and ester groups in the backbone, and pendant vinylidine functionality. These materials were characterized by examining their morphological patterns using optical and scanning electron microscopy. When ethylene glycol dimethacrylate (EGDMA) was used as a cross-linking agent, microspheres of approximately 1 μm in diameter were obtained. Diethylene glycol dimethacrylate (DEGDMA) cross-linking resulted in relatively large spherical structures (1–5 μm) as well as spherical nanostructures (200 nm). Using triethylene glycol dimethacrylate (TEGDMA) resulted in spheres with diameters between 1 μm and 3 μm. The hydrodynamic particle diameter decreased with the increasing chain length of the dimethacrylate cross-linking agents. The turbidity increased with the temperature of transition points occurring at approximately 31–32°C confirming the thermosensitivity of the obtained polymeric structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ankareddi, I., & Brazel, C. S. (2007). Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release. International Journal of Pharmaceutics, 336, 241–247. DOI: 10.1016/j.ijpharm.2006.11.065.

    Article  CAS  Google Scholar 

  • Arima, T., Hamada, T., & McCabe, J. F. (1995). The effects of cross-linking agents on some properties of HEMA-based resins. Journal of Dental Research, 74, 1597–1601. DOI: 10.1177/00220345950740091501.

    Article  CAS  Google Scholar 

  • Barszczewska-Rybarek, I.-M. (2009). Structure-property relationships in dimethacrylate networks based on Bis-GMA, UDMA and TEGDMA. Dental Materials, 25, 1082–1089. DOI: 10.1016/j.dental.2009.01.106.

    Article  CAS  Google Scholar 

  • Bobofchak, K. M., Tarasov, E., & Olsen, K. W. (2008). Effect of cross-linker length on the stability of hemoglobin. Biochimica et Biophysica Acta - Proteins & Proteomics, 1784, 1410–1414. DOI: 10.1016/j.bbapap.2008.01.014.

    Article  CAS  Google Scholar 

  • Brazel, C. S., & Peppas, N. A. (1996). Pulsatile and local delivery of methrombolytic and antithrombotic agents using poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. Journal of Controlled Release, 39, 57–64. DOI: 10.1016/0168-3659(95)00134-4.

    Article  CAS  Google Scholar 

  • Brazel, C. S., & Peppas, N. A. (1994). Temperature- and pH-sensitive hydrogels for controlled release of heparin and streptoki- nase. In A. G. Mikos, R. M. Murphy, H. Bernstein, & N. A. Peppas (Eds.), Biomaterials for drug and cell delivery (pp. 211–216). Pittsburgh, PA, USA: Materials Research Society.

    Google Scholar 

  • Çaykara, T., Kiper, S., Demirel, G., Demirci, S., & Çakanyıldırım, Q. (2007). Temperature-responsive characteristics of poly(N-isopropylacrylamide) hydrogels with macroporous structure. Polymer International, 56, 275–282. DOI: 10.1002/pi.2162.

    Article  Google Scholar 

  • Ciullo, P. A. (1996). Rubber. In P. A. Ciullo (Ed.), Industrial minerals and their uses: A handbook & formulary (p. 220). New Jersey, NJ, USA: Noyes Publications.

    Google Scholar 

  • Cornelius, V. J., Snowden, M. J., Silver, J., & Fern, G. R. (2004). A study of the binding of the biologically important hematin molecule to a novel imidazole containing poly(N-isopropylacrylamide) microgel. Reactive and Functional Polymers, 58, 165–173. DOI: 10.1016/j.reactfunct polym.2003.12.003.

    Article  CAS  Google Scholar 

  • Coughlan, D. C., & Corrigan, O. I. (2006). Drug-polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems. International Journal of Pharmaceutics, 313, 163–174. DOI: 10.1016/j. ijpharm.2006.02.005.

    Article  CAS  Google Scholar 

  • Dale, J. A., & Millar, J. R. (1981). Cross-linker effectiveness in styrene copolymerization. Macromolecules, 14, 1515–1518. DOI: 10.1021/ma50006a072.

    Article  CAS  Google Scholar 

  • Das, M., Zhang, H., & Kumacheva, E. (2006). Microgels: Old materials with new applications. Annual Review of Material Research, 36, 117–142. DOI: 10.1146/annurev.matsci.36.011205.123513.

    Article  CAS  Google Scholar 

  • Duan, Q., Narumi, A., Miura, Y., Shen, X., Sato, S.-I., Satoh, T., & Kakuchi, T. (2006). Thermoresponsive property controlled by end-functionalization of poly(N-isopropylacrylamide) with phenyl, biphenyl, and triphenyl groups. Polymer Journal, 38, 306–310. DOI: 10.1295/polymj.38.306.

    Article  CAS  Google Scholar 

  • Ganapathy, S., Rajamohanan, P. R., Badiger, M. V., Mandhare, A. B., & Mashelkar, R. A. (2000). Proton magnetic resonance imaging in hydrogels: volume phase transition in poly(N-isopropylacrylamide). Polymer, 41, 4543–4547. DOI: 10.1016/S0032-3861(99)00615-1.

    Article  CAS  Google Scholar 

  • Guerrero-Ramírez, L. G., Nuńo-Donlucas, S. M., Cesteros, L. C., & Katimea, I. (2008). Smart copolymeric nanohydrogels: Synthesis, characterization and properties. Materials Chemistry and Physics, 112, 1088–1092. DOI: 10.1016/j.matchem phys.2008.07.023.

    Article  Google Scholar 

  • Hamerska-Dudra, A., Bryjak, J., & Trochimczuk, A. W. (2006). Novel method of enzymes stabilization on crosslinked thermosensitive carriers. Enzyme and Microbial Technology, 38, 921–925. DOI: 10.1016/j.enzmictec.2005.08.019.

    Article  CAS  Google Scholar 

  • Haselgrübler, T., Amerstorfer, A., Schindler, H., & Gruber, H. J. (1995). Synthesis and applications of a new poly(ethy1ene glycol) derivative for the crosslinking of amines with thiols. Bioconjugate Chemistry, 6, 242–248. DOI: 10.1021/bc00033a002.

    Article  Google Scholar 

  • Hirose, Y., Amiya, T., Hirokawa, Y., & Tanaka, T. (1987). Phase transition of submicron gel beads. Macromolecules, 20, 1342–1344. DOI: 10.1021/ma00172a029.

    Article  CAS  Google Scholar 

  • Hoare, T., & McLean, D. (2006). Kinetic prediction of functional group distributions in thermosensitive microgels. The Journal of Physical Chemistry B, 110, 20327–20336. DOI: 10.1021/jp0643451.

    Article  CAS  Google Scholar 

  • Hoare, T., & Pelton, R. (2007). Functionalized microgel swelling: Comparing theory and experiment. The Journal of Physical Chemistry B, 111, 11895–11906. DOI: 10.1021/jp072360f.

    Article  CAS  Google Scholar 

  • Iizawa, T., Ishido, T., Gotoh, T., & Sakohara, S. (2007). Synthesis of nonporous poly(N-alkylacrylamide) gel beads by nonaqueous sedimentation polymerization. Polymer Journal, 39, 18–20. DOI: 10.1295/polymj.PJ2006097.

    Article  CAS  Google Scholar 

  • Kim, J.-W., Utada, A. S., Fernández-Nieves, A., Hu, Z., & Weitz, D. A. (2007). Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angewandte Chemie International Edition, 46, 1819–1822. DOI: 10.1002/anie.200604206.

    Article  CAS  Google Scholar 

  • Kiritoshi, Y., & Ishihara, K. (2003). Molecular recognition of alcohol by volume phase transition of cross-linked poly(2-methacryloyloxyethyl phosphorylcholine) gel. Science and Technology of Advanced Materials, 4, 93–98. DOI: 10.1016/S1468-6996(03)00010-X.

    Article  CAS  Google Scholar 

  • Kalagasidis Krušić, M. K., Dzunuzović, E., Trifunović, S., & Filipović, J. (2003). Semi-IPNs based on polyacrylamide and poly(itaconic acid). Polymer Bulletin, 51, 159–166. DOI: 10.1007/s00289-003-0203-7.

    Article  Google Scholar 

  • Li, L., & Lee, L. J. (2005). Photopolymerization of HEMA/DEGDMA hydrogels in solution. Polymer, 46, 11540–11547. DOI: 10.1016/j.polymer.2005.10.051.

    Article  CAS  Google Scholar 

  • Lindman, S., Lynch, I., Thulin, E., Nilsson, H., Dawson, K. A., & Linse, S. (2007). Sysyematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effect of particle size and hydrophobicity. NanoLetters, 7, 914–920. DOI: 10.1021/nl062743+.

    CAS  Google Scholar 

  • Ma, X., Xi, J., Huang, X., Zhao, X., & Tang, X. (2004). Novel hydrophobically modified temperature-sensitive microgels with tunable volume-phase transition temperature. Materials Letters, 58, 3400–3404. DOI: 10.1016/j.matlet.2004.04.019.

    Article  CAS  Google Scholar 

  • Maeda, T., Kanda, T., Yonekura, Y., Yamamoto, K., & Aoyagi, T. (2006). Hydroxylated poly(N-isopropylacrylamide) as functional thermoresponsive materials. Biomacromolecules, 7, 545–549. DOI: 10.1021/bm050829b.

    Article  CAS  Google Scholar 

  • Mathias, L. J., & Dickerson, C. W. (1991). Acrylate-containing oligo(ether-ester) cross-linking agents with controlled molecular weights via end-group termination. Macromolecules, 24, 2048–2053. DOI: 10.1021/ma00008a052.

    Article  CAS  Google Scholar 

  • Musial, W., Vincent, B., Szumny, A., & Voncina, B. (2010). Morphological characteristics of modified freeze-dried poly (N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS. Chemical Papers, 64, 602–612. DOI: 10.2478/s11696-010-0041-7.

    Article  CAS  Google Scholar 

  • Nolan, C. M., Gelbaum, L. T., & Lyon, L. A. (2006). 1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels. Biomacromolecules, 7, 2918–2922. DOI: 10.1021/bm060718s.

    Article  CAS  Google Scholar 

  • Oyerokun, F. T., & Schweizer, K. S. (2005). Thermodynamics, orientational order and elasticity of strained liquid crystalline melts and elastomers. The Journal of Physical Chemistry B, 109, 6595–6603. DOI: 10.1021/jp045646i.

    Article  CAS  Google Scholar 

  • Pelton, R. H., & Chibante, P. (1986). Preparation of aqueous lattices with N-isopropylacrylamide. Colloids and Surfaces, 20, 247–256. DOI: 10.1016/0166-6622(86)80274-8.

    Article  CAS  Google Scholar 

  • Ringsdorf, H., Venzmer, J., & Winnik, F. M. (1991). Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides). Macromolecules, 24, 1678–1686. DOI: 10.1021/ma00007a034.

    Article  CAS  Google Scholar 

  • Saunders, B. R., Laajam, N., Daly, E., Teow, S., Hu, X., & Stepto, R. (2009). Microgels: From responsive polymer colloids to biomaterials. Advances in Colloid and Interface Science, 147–148, 251–262. DOI: 10.1016/j.cis.2008.08.008.

    Article  Google Scholar 

  • Schild, H. G. (1992). Poly(N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science, 17, 163–249. DOI: 10.1016/0079-6700(92)90023-R.

    Article  CAS  Google Scholar 

  • Serres, A., Baudyš, M., & Kim, S. W. (1996). Temperature and pH-sensitive polymers for human calcitonin delivery. Pharmaceutical Research, 13, 196–201. DOI: 10.1023/A:1016026711364.

    Article  CAS  Google Scholar 

  • Shefer, A., Grodzinsky, A. J., Prime, K. L., & Busnel, J.-P. (1993). Novel model networks of poly(acry1ic acid): Synthesis and characterization. Macromolecules, 26, 5009–5014. DOI: 10.1021/ma00071a004.

    Article  CAS  Google Scholar 

  • Shen, Z., Wei, W., Zhao, Y., Ma, G., Dobashi, T., Maki, Y., Su, Z., & Wan, J. (2008). Thermosensitive polymer-conjugated albumin nanospheres as thermal targeting anti-cancer drug carrier. European Journal of Pharmaceutical Sciences, 35, 271–282. DOI: 10.1016/j.ejps.2008.07.006.

    Article  CAS  Google Scholar 

  • Skrabania, K., Kristen, J., Laschewsky, A. Akdemir, Ö., Hoth, A., & Lutz, J.-F. (2007). Design, synthesis, and aqueous aggregation behavior of nonionic single and multiple thermoresponsive polymers. Langmuir, 23, 84–93. DOI: 10.1021/la061509w.

    Article  CAS  Google Scholar 

  • Snowden, M. J., & Vincent, B. (1992). The temperature-controlled flocculation of crosslinked latex particles. Journal of the Chemical Society, Chemical Communications, 1992, 1103–1105. DOI: 10.1039/C39920001103.

    Article  Google Scholar 

  • Soppimath, K. S., Tan, D. C.-W., & Yang, Y. Y. (2005). pH-triggered thermally responsive polymer core-shell nanoparticles for drug delivery. Advanced Materials, 17, 318–323. DOI: 10.1002/adma.200401057.

    Article  CAS  Google Scholar 

  • Suzuki, A. (1993). Phase transition in gels of sub-millimeter size induced by interaction with stimuli. In Advances in Polymer Science (Vol. 110), Responsive Gels: Volume Transitions II (pp. 199–240). Berlin/Heidelberg, Germany: Springer. DOI: 10.1007/BFb0021134.

    Google Scholar 

  • Suzuki, A., & Tanaka, T. (1990). Phase transition in polymer gels induced by visible light. Nature, 346, 345–347. DOI: 10.1038/346345a0.

    Article  CAS  Google Scholar 

  • Tanaka, F., Koga, T., & Winnik, F. (2008). Temperature-responsive polymers in mixed solvents: Competitive hydrogen bonds cause cononsolvency. Physical Review Letters, 101, 028302–1–028302–4. DOI: 10.1103/PhysRevLett.101.028302.

    Google Scholar 

  • Wei, H., Zhang, X.-Z. Chen, W.-Q., Cheng, S.-X., & Zhuo, R.-X. (2007). Self-assembled thermosensitive micelles based on poly(l-lactide-star block-N-isopropylacrylamide) for drug delivery. Journal of Biomedical Materials Research Part A, 83A, 980–989. DOI: 10.1002/jbm.a.31295.

    Article  CAS  Google Scholar 

  • Xu, Y., Du, Y., Huang, R., & Gao, L. (2004). Preparation and modification of N-(2-hydroxyl)propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier. Biomaterials, 24, 5015–5022. DOI: 10.1016/S0142-9612(03)00408-3.

    Article  Google Scholar 

  • Zhou, Y.-M., Ishikawa, A., Okahashi, R., Uchida, K., Nemoto, Y., Nakayama, M., & Nakayama, Y. (2007). Deposition transfection technology using a DNA complex with a thermoresponsive cationic star polymer. Journal of Controlled Release, 123, 239–246. DOI: 10.1016/j.jconrel.2007.08.026.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Musial.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musial, W., Kokol, V., Fecko, T. et al. Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers. Chem. Pap. 64, 791–798 (2010). https://doi.org/10.2478/s11696-010-0065-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0065-z

Keywords

Navigation