Skip to main content
Log in

Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Direct electrochemistry and electrocatalysis of horseradish peroxidase (HRP) immobilized on a hyaluronic acid (HA)-single walled carbon nanotubes (SCNs) composite film coated glassy carbon electrode (GCE) was studied for the first time. HRP entrapped in the SCNs-HA composite film exhibited a pair of well-defined, quasi-reversible cyclic voltammetric peaks in a 0.1 M phosphate buffer solution (pH 7.0). Formal potential vs. standard calomel electrode (E°′) was −0.232 V, and E°′ was linearly dependent on the solution pH indicating that the electron transfer was proton-coupled. The current is linearly dependent on the scan rate, indicating that the direct electrochemistry of HRP in that case is a surface-controlled electrode process. UV-VIS spectrum suggested HRP retained its original conformation in the SCNs-HA film. Immobilized HRP showed excellent electrocatalysis in the reduction of hydrogen peroxide (H2O2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bard, A. J., & Faulkner, L. R. (1980). Electrochemical methods (pp. 439). New York, NY, USA: Wiley.

    Google Scholar 

  • Chikkaveeraiah, B. V., Liu, H., Mani, V., Papadimitrakopoulos, F., & Rusling, J. F. (2009). A microfluidic electrochemical device for high sensitivity biosensing: Detection of nanomolar hydrogen peroxide. Electrochemistry Communications, 11, 819–822. DOI: 10.1016/j.elecom.2009.02.002.

    Article  CAS  Google Scholar 

  • Chen, X., Ruan, C., Kong, J., & Deng, J. (2000). Characterization of the direct electron transfer and bioelectrocatalysis of horseradish peroxidase in DNA film at pyrolytic graphite electrode. Analytica Chimica Acta, 412, 89–98. DOI: 10.1016/S0003-2670 (99) 00877-6.

    Article  CAS  Google Scholar 

  • Du, D., Huang, X., Cai, J., & Zhang, A. (2007). Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix. Sensors and Actuators B: Chemical, 127, 531–535. DOI: 10.1016/j.snb.2007.05.006.

    Article  Google Scholar 

  • ElKaoutit, M., Naranjo-Rodriguez, I., Domínguez, M., Hernández-Artiga, M. P., Bellido-Milla, D., & Hidalgo-Hidalgo de Cisneros, J. L. (2008). A third-generation hydrogen peroxide biosensor based on Horseradish Peroxidase (HRP) enzyme immobilized in a Nafion-Sonogel-Carbon composite. Electrochimca Acta, 53, 7131–7137. DOI: 10.1016/j.electacta.2008.04.086.

    Article  CAS  Google Scholar 

  • Gao, R., Shangguan, X., Qiao, G., & Zheng, J. (2008). Direct electrochemistry of hemoglobin and its electrocatalysis based on hyaluronic acid and room temperature ionic liquid. Electroanalysis, 20, 2537–2542. DOI: 10.1002/elan.200804353.

    Article  CAS  Google Scholar 

  • Goyal, R. N., Tyagi, A., Bachheti, N., & Bishnoi, S. (2008). Voltammetric determination of bisoprolol fumarate in pharmaceutical formulations and urine using single-wall carbon nanotubes modified glassy carbon electrode. Electrochimca Acta, 53, 2802–2808. DOI: 10.1016/j.electacta.2007.10.057.

    Article  CAS  Google Scholar 

  • Huang, H., Hu, N., Zeng, Y., & Zhou, G. (2002). Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Analytical Biochemistry, 308, 141–151. DOI: 10.1016/S0003-2697(02)00242-7.

    Article  CAS  Google Scholar 

  • Iijima, S. (1991). Helical microtubules of graphitic carbon, Nature, 354, 56–58. DOI: 10.1038/354056a0.

    Article  CAS  Google Scholar 

  • Kang, X., Wang, J., Tang, Z., Wu, H., & Lin, Y. (2009). Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hybrid organic-inorganic film of chitosan/sol-gel/carbon nanotubes. Talanta, 78, 120–125. DOI: 10.1016/j.talanta.2008.10.063.

    Article  CAS  Google Scholar 

  • Lee, H., & Mijović, J. (2009). Bio-nano complexes: DNA/surfactant/single-walled carbon nanotube interactions in electric field. Polymer, 50, 881–890. DOI: 10.1016/j.polymer.2008.12.021.

    Article  CAS  Google Scholar 

  • Liu, G., & Gooding, J. J. (2006). An interface comprising molecular wires and poly(ethylene glycol) spacer units selfassembled on carbon electrodes for studies of protein electrochemistry. Langmuir, 22, 7421–7430. DOI: 10.1021/la0607510.

    Article  CAS  Google Scholar 

  • Liu, H., & Hu, N. (2006). Interaction between myoglobin and hyaluronic acid in their layer-by-layer assembly: Quartz crystal microbalance and cyclic voltammetry studies. The Journal of Physical Chemistry B, 110, 14494–14502. DOI: 10.1021/jp061271k.

    Article  CAS  Google Scholar 

  • Laviron, E. (1979). The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. Journal of Electroanalytical Chemistry, 100, 263–270. DOI: 10.1016/S0022-0728(79)80167-9.

    Article  CAS  Google Scholar 

  • Ma, L., Tian Y., & Rong, Z. (2007). Direct electrochemistry of hemoglobin in the hyaluronic acid films. Journal of Biochemical and Biophysical Methods, 70, 657–662. DOI: 10.1016/j.jbbm.2007.03.004.

    Article  CAS  Google Scholar 

  • Nassar, A.-E. F., Rusling, J. F., & Kumosinski, T. F. (1997). Salt and pH effects on electrochemistry of myoglobin in thick films of a bilayer-forming surfactant. Biophysical Chemistry, 67, 107–116. DOI: 10.1016/S0301-4622(97)00027-6.

    Article  CAS  Google Scholar 

  • Ruzgas, T., Gorton, L., Emnéus, J., & Marko-Varga, G. (1995). Kinetic models of horseradish peroxidase action on a graphite electrode. Journal of Electroanalytical Chemistry, 391, 41–49. DOI: 10.1016/0022-0728(95)03930-F.

    Article  Google Scholar 

  • Sapurina, I., & Stejskal, J. (2009). Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis. Chemical Papers, 63, 579–585. DOI: 10.2478/s11696-009-0061-3.

    Article  CAS  Google Scholar 

  • Teng, Y. J., Zuo, S. H., & Lan, M. B. (2009). Direct electron transfer of Horseradish peroxidase on porous structure of screen-printed electrode. Biosensors and Bioelectronics, 24, 1353–1357. DOI: 10.1016/j.bios.2008.07.062.

    Article  CAS  Google Scholar 

  • Wang, J., Li, M., Shi, Z., Li, N., & Gu, Z. (2002). Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Analytical Chemistry, 74, 1993–1997. DOI: 10.1021/ac010978u.

    Article  CAS  Google Scholar 

  • Wang, J., & Musameh, M. (2003). Carbon nanotube/Teflon composite electrochemical sensors and biosensors. Analytical Chemistry, 75, 2075–2079. DOI: 10.1021/ac030007+.

    Article  CAS  Google Scholar 

  • Wang J., Pamidi, P. V. A., & Rogers, K. R. (1998). Sol-gelderived thick-film amperometric immunosensors. Analytical Chemistry, 70, 1171–1175. DOI: 10.1021/ac971093e.

    Article  CAS  Google Scholar 

  • Wang, M., Zhao, F., Liu Y., & Dong, S. (2005). Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes. Biosensors and Bioelectronics, 21, 159–166. DOI: 10.1016/j.bios.2004.08.012.

    Article  CAS  Google Scholar 

  • Zhang, Y., He, P., & Hu, N. (2004). Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochimca Acta, 49, 1981–1988. DOI: 10.1016/j.electacta.2003.12.028.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Zheng, J. (2008). Direct electrochemistry and electrocatalysis of myoglobin immobilized in hyaluronic acid and room temperature ionic liquids composite film. Electrochemistry Communications, 10, 1400–1403. DOI: 10.1016/j.elecom.2008.07.022.

    Article  CAS  Google Scholar 

  • Zhao, X., Mai, Z., Kang, X., & Zou, X. (2008). Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite. Biosensors and Bioelectronics, 23, 1032–1038. DOI: 10.1016/j.bios.2007.10.012.

    Article  CAS  Google Scholar 

  • Zhu, Y., Cao, H., Tang, L., Yang, X., & Li, C. (2009). Immobilization of horseradish peroxidase in three-dimensional macroporous TiO2 matrices for biosensor applications. Electrochimica Acta, 54, 2823–2827. DOI: 10.1016/j.electacta.2008.11.025.

    Article  CAS  Google Scholar 

  • Zhu, Y., Cheng, G., & Dong, S. (2002). Structural electrochemical study of hemoglobin by in situ circular dichroism thin layer spectroelectrochemistry. Biophysical Chemistry, 97, 129–138. DOI: 10.1016/S0301-4622(02)00045-5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Zheng, J. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film. Chem. Pap. 64, 566–572 (2010). https://doi.org/10.2478/s11696-010-0053-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0053-3

Keywords

Navigation