Skip to main content
Log in

Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) (PBLG-graft-PEG) copolymer was synthesized by the ester exchange reaction of PBLG homopolymer with mPEG. Aggregation behavior of the PBLG-graft-PEG copolymer in mixtures of ethanol and chloroform was investigated by transmission electron microscopy (TEM), dynamic light scattering (DLS), and viscometry. Effects of the polymer solution concentration, grafting degree, test temperature, and chloroform content on the morphology, average particle diameter, and critical micelle concentration (CMC) of the micelles formed by the PBLG-graft-PEG copolymer in the mixed solvents were mainly studied. It was revealed that the PBLG-graft-PEG copolymer can self-assemble into polymeric micelles with a core-shell structure in various shapes depending on the preparation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, A., & Yamazaki, T. (1989). Deuterium NMR analysis of poly(γ-benzyl l-glutamate) in the lyotropic liquid-crystalline state: orientational order of the α-helical backbone and conformation of the pendant side chain. Macromolecules, 22, 2138–2145. DOI: 10.1021/ma00195a023.

    Article  CAS  Google Scholar 

  • Cai, C., Lin, J., Chen, T., & Tian, X. (2010). Aggregation behavior of graft copolymer with rigid backbone. Langmuir, 26, 2791–2797. DOI: 10.1021/1a902834m.

    Article  CAS  Google Scholar 

  • Carlsen, A., & Lecommandoux, S. (2009). Self-assembly of polypeptide-based block copolymer amphiphiles. Current Opinion in Colloid & Interface Science, 14, 329–339. DOI: 10.1016/j.cocis.2009.04.007.

    Article  CAS  Google Scholar 

  • Chécot, F., Lecommandoux, S., Gnanou, Y., & Klok, H.-A. (2002). Water-soluble stimuli-responsive vesicles from peptide-based diblock copolymers. Angewandte Chemie International Edition, 41, 1339–1343. DOI: 10.1002/1521-3773(20020415)41:8<1339::AID-ANIE1339>3.0.CO;2-N.

    Article  Google Scholar 

  • Cheon, J.-B., Jeong, Y.-I., & Cho, C.-S. (1999). Effects of temperature on diblock copolymer micelle composed of poly(γ-benzyl l-glutamate) and poly(N-isopropylacrylamide). Polymer, 40, 2041–2050. DOI: 10.1016/S0032-3861(98)00432-7.

    Article  CAS  Google Scholar 

  • Cho, C.-S., Cheon, J.-B., Jeong, Y.-I., Kim, I.-S., Kim, S.-H., & Akaike, T. (1997). Novel core-shell type thermo-sensitive nanoparticles composed of poly(γ-benzyl l-glutamate) as the core and poly(N-isopropylacrylamide) as the shell. Macromolecular Rapid Communications, 18, 361–369. DOI: 10.1002/marc.1997.030180502.

    Article  CAS  Google Scholar 

  • Cho, C.-S., Nah, J.-W., Jeong, Y.-I., Cheon, J.-B., Asayama, S., Ise, H., & Akaike, T. (1999). Conformational transition of nanoparticles composed of poly(γ-benzyl l-glutamate) as the core and poly(ethylene oxide) as the shell. Polymer, 40, 6769–6775. DOI: 10.1016/S0032-3861(99)00007-5.

    Article  CAS  Google Scholar 

  • Gao, Z., Desjardins, A., & Eisenberg, A. (1992). Solubilization equilibria of water in nonaqueous solutions of block ionomer reverse micelles: an NMR study. Macromolecules, 25, 1300–1303. DOI: 10.1021/ma00030a015.

    Article  CAS  Google Scholar 

  • Harada, A., Cammas, S., & Kataoka, K. (1996). Stabilized α-helix structure of poly(l-lysine)-block-poly(ethylene glycol) in aqueous medium through supramolecular assembly. Macromolecules, 29, 6183–6188. DOI: 10.1021/ma960487p.

    Article  CAS  Google Scholar 

  • He, Y. Y., Li, Z. B., Simone, P., & Lodge, T. P. (2006). Self-assembly of block copolymer micelles in an ionic liquid. Journal of the American Chemical Society, 128, 2745–2750. DOI: 10.1021/ja058091t.

    Article  CAS  Google Scholar 

  • Iatrou, H., Frielinghaus, H., Hanski, S., Ferderigos, N., Ruokolainen, J., Ikkala, O., Richter, D., Mays, J., & Hadjichristidis, N. (2007). Architecturally induced multiresponsive vesicles from well-defined polypeptides. Formation of gene vehicles. Biomacromolecules, 8, 2173–2181. DOI: 10.1021/bm070360f.

    Article  CAS  Google Scholar 

  • Jeong, Y.-I., Nah, J.-W., Lee, H.-C., Kim, S.-H., & Cho, C.-S. (1999). Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. International Journal of Pharmaceutics, 188, 49–58. DOI: 10.1016/S0378-5173(99)00202-1.

    Article  CAS  Google Scholar 

  • Kwon, G., Naito, M., Yokoyama, M., Okano, T., Sakurai, Y., & Kataoka, K. (1993). Micelles based on AB block copolymers of poly(ethylene oxide) and poly(β-benzyl l-aspartate). Langmuir, 9, 945–949. DOI: 10.1021/la00028a012.

    Article  CAS  Google Scholar 

  • Li, T., Lin, J., Chen, T., & Zhang, S. (2006). Polymeric micelles formed by polypeptide graft copolymer and its mixtures with polypeptide block copolymer. Polymer, 47, 4485–4489. DOI: 10.1016/j.polymer.2006.04.011.

    Article  CAS  Google Scholar 

  • Lin, J., Zhang, S., Chen, T., Lin, S., & Jin, H. (2007). Micelle formation and drug release behavior of polypeptide graft copolymer and its mixture with polypeptide block copolymer. International Journal of Pharmaceutics, 336, 49–57. DOI: 10.1016/j.ijpharm.2006.11.026.

    Article  CAS  Google Scholar 

  • Lin, J., Zhu, J., Chen, T., Lin, S., Cai, C., Zhang, L., Zhuang, Y., & Wang, X.-S. (2009). Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials, 30, 108–117. DOI: 10.1016/j.biomaterials.2008.09.010.

    Article  CAS  Google Scholar 

  • Lin, J., Zhu, G., Zhu, X., Lin, S., Nose, T., & Ding, W. (2008). Aggregate structure change induced by intramolecular helix-coil transition. Polymer, 49, 1132–1136. DOI: 10.1016/j.polymer.2008.01.021.

    Article  CAS  Google Scholar 

  • Markland, P., Amidon, G. L., & Yang, V. C. (1999). Modified polypeptides containing γ-benzyl glutamic acid as drug delivery platforms. International Journal of Pharmaceutics, 178, 183–192. DOI: 10.1016/S0378-5173(98)00373-1.

    Article  CAS  Google Scholar 

  • Moffitt, M., & Eisenberg, A. (1997). Scaling relations and size control of block ionomer microreactors containing different metal ions. Macromolecules, 30, 4363–4373. DOI: 10.1021/ma961577x.

    Article  CAS  Google Scholar 

  • Nah, J.-W., Jeong, Y.-I., & Cho, C.-S. (1998). Clonazepam release from core-shell type nanoparticles composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. Journal of Polymer Science Part B: Polymer Physics, 36, 415–423. DOI: 10.1002/(SICI)1099-0488(199802)36:3<415::AID-POLB3>3.0.CO;2-Q.

    Article  CAS  Google Scholar 

  • Oh, I., Lee, K., Kwon, H.-Y., Lee, Y.-B., Shin, S.-C., Cho, C.-S., & Kim, C.-K. (1999). Release of adriamycin from poly(γ-benzyl-l-glutamate)/poly(ethylene oxide) nanoparticles. International Journal of Pharmaceutics, 181, 107–115. DOI: 10.1016/S0378-5173(99)00012-5.

    Article  CAS  Google Scholar 

  • Price, C., Kendall, K. D., Stubbersfield, R. B., & Wright, B. (1983). Thermodynamics of micellization of a polystyrene-b-poly(ethylene/propylene) block copolymer in n-decane. Polymer Communications, 24, 326–328.

    CAS  Google Scholar 

  • Rao, J., Luo, Z., Ge, Z., Liu, H., & Liu, S. (2007). “Schizophrenic” micellization associated with coil-to-helix transitions based on polypeptide hybrid double hydrophilic rod-coil diblock copolymer. Biomacromolecules, 8, 3871–3878. DOI: 10.1021/bm700830b.

    Article  CAS  Google Scholar 

  • Rodríguez-Hernández, J., & Lecommandoux, S. (2005). Reversible inside-out micellization of pH-responsive and watersoluble vesicles based on polypeptide diblock copolymers. Journal of the American Chemical Society, 127, 2026–2027. DOI: 10.1021/ja043920g.

    Article  Google Scholar 

  • Rolland, A., O’Mullane, J., Goddard, P., Brookman, L., & Petrak, K. (1992). New macromolecular carriers for drugs. I. Preparation and characterization of poly (oxyethylene-b-isoprene-b-oxyethylene) block copolymer aggregates. Journal of Applied Polymer Science, 44, 1195–1203. DOI: 10.1002/app.1992.070440709.

    Article  CAS  Google Scholar 

  • Sun, J., Chen, X., Deng, C., Yu, H., Xie, Z., & Jing, X. (2007). Direct formation of giant vesicles from synthetic polypeptides. Langmuir, 23, 8308–8315. DOI: 10.1021/la701038f.

    Article  CAS  Google Scholar 

  • Tang, D. M., Lin, J. P., Lin, S. L., Zhang, S. N., Chen, T., & Tian, X. H. (2004). Self-assembly of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) and its mixtures with poly(γ-benzyl l-glutamate) homopolymer. Macromolecular Rapid Communications, 25, 1241–1246. DOI: 10.1002/marc.y200400100.

    Article  CAS  Google Scholar 

  • Wong, M. S., Cha, J. N., Choi, K.-S., Deming, T. J., & Stucky, G. D. (2002). Assembly of nanoparticles into hollow spheres using block copolypeptides. Nano Letters, 2, 583–587. DOI: 10.1021/nl020244c.

    Article  CAS  Google Scholar 

  • Xu, Z., Feng, L., Ji, J., Cheng, S., Chen, Y., & Yi, C. (1998). The micellization of amphiphilic graft copolymer PMMA-g-PEO in toluene. European Polymer Journal, 34, 1499–1504. DOI: 10.1016/S0014-3057(97)00279-6.

    Article  CAS  Google Scholar 

  • Zhang, L., & Eisenberg, A. (1999). Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution. Macromolecules, 32, 2239–2249. DOI: 10.1021/ma981039f.

    Article  CAS  Google Scholar 

  • Zhang, L., & Eisenberg, A. (1996). Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. Journal of the American Chemical Society, 118, 3168–3181. DOI: 10.1021/ja953709s.

    Article  CAS  Google Scholar 

  • Zhang, W., Shi, L., An, Y., Wu, K., Gao, L. Liu, Z., Ma, R., Meng, Q., Zhao, C., & He, B. (2004). Adsorption of poly(4-vinyl pyridine) unimers into polystyrene-block-poly(acrylic acid) micelles in ethanol due to hydrogen bonding. Macromolecules, 37, 2924–2929. DOI: 10.1021/ma0499775.

    Article  CAS  Google Scholar 

  • Zhong, X. F., Varshney, S. K., & Eisenberg, A. (1992). Critical micelle lengths for ionic blocks in solutions of polystyrene-b-poly(sodium acrylate) ionomers. Macromolecules, 25, 7160–7167. DOI: 10.1021/ma00052a014.

    Article  CAS  Google Scholar 

  • Zhu, G. (2010). Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane. Chemical Papers, 64, 34–39. DOI: 10.2478/s11696-009-0090-y.

    Article  CAS  Google Scholar 

  • Zhu, G. (2009a). Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol. Chemical Papers, 63, 683–688. DOI: 10.2478/s11696-009-0074-y.

    Article  CAS  Google Scholar 

  • Zhu, G. (2009b). Study on self-assembly of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and poly(γ-benzyl l-glutamate)-blockpoly(ethylene glycol) copolymer in ethanol. Journal of Macromolecular Science, Part A, 46, 892–898. DOI: 10.1080/10601320903078313.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Quan Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, GQ., Wang, FG., Liu, YY. et al. Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents. Chem. Pap. 64, 657–662 (2010). https://doi.org/10.2478/s11696-010-0046-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0046-2

Keywords

Navigation