Skip to main content
Log in

A deuterium-palladium electrode as a new sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile and benzonitrile

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A deuterium-palladium electrode was employed as a new indicator electrode for the titration of weak acids in acetonitrile and benzonitrile. The investigated electrode showed a linear dynamic response for p-toluenesulfonic acid in the concentration range from 0.001 M to 0.1 M with a Nernstian slope of 48 mV in acetonitrile. Sodium methylate, potassium hydroxide and tetrabutylammonium hydroxide proved to be very suitable titrating agents for these titrations. The response time was less than 10-11 s and the lifetime of the electrode was limitless. Advantages of the electrode are: long-term stability, fast response, reproducibility, easy preparation and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aktaş, A. H., Yaşar, G., & Alsancak, G. Ö. (2001). Conductimetric and potentiometric titration of some hydroxylated cinnamic acids with tetrabutylammonium hydroxide in nonaqueous media. Turkish Journal of Chemistry, 25, 501–508.

    Google Scholar 

  • Al-Daher, I. M., & Kratochvil, B. (1980). Potentiometric titrations of metal ions in acetonitrile with polyamine ligands. Talanta, 27, 983–988. DOI: 10.1016/0039-9140(80)80131-7.

    Article  CAS  Google Scholar 

  • Andrés, M. J., & Romero, C. (1988). Differentiation of the acidic groups of fulvic acids from lignite by potentiometric titration in acetone, acetonitrile and isopropanol. Fuel, 67, 1305–1307. DOI: 10.1016/0016-2361(88)90055-5.

    Article  Google Scholar 

  • Antonijević, M. M., Vukanović, B., & Mihajlović, R. (1992). Natural monocrystalline pyrite as electrode material for potentiometric titrations in water. Talanta, 39, 809–814. DOI: 10.1016/0039-9140(92)80100-R.

    Article  Google Scholar 

  • Barbosa, J., Hernandez-Cassou, S., Sanz-Nebot, V., & Toro, I. (1997). Variation of acidity constants of peptides in acetonitrile-water mixtures with solvent composition: effect of preferential solvation. The Journal of Peptide Research, 50, 14–24. DOI: 10.1111/j.1399-3011.1997.tb00615.x.

    Article  CAS  Google Scholar 

  • Barbosa, J., Roses, M., & Sanz-Nebot, V. (1988). Acid-base indicators in acetonitrile: Their pK values and chromatic parameters. Talanta, 35, 1013–1018. DOI: 10.1016/0039-9140(88)80240-6.

    Article  CAS  Google Scholar 

  • Barbosa, J., & Sanz-Nebot, V. (1989). Acid-base equilibria and assay of benzodiazepines in acetonitrile medium. Talanta, 36, 837–842. DOI: 10.1016/0039-9140(89)80164-X.

    Article  CAS  Google Scholar 

  • Barbosa, J., Sanz-Nebot, V., & Torrero, E. (1991). Equilibrium constants and assay of bases in acetonitrile. Talanta, 38, 425–432. DOI:10.1016/0039-9140(91)80081-A.

    Article  CAS  Google Scholar 

  • Barbosa, J., Sanz-Nebot, V., & Torrero, M. E. (1990). Acid-base equilibria of β-blockers in acetonitrile. Journal of Pharmaceutical and Biomedical Analysis, 8, 675–679. DOI: 10.1016/0731-7085(90)80101-T.

    Article  CAS  Google Scholar 

  • Bartnicka, H., Bojanowska, I., & Kalinowski, M. K. (1991). Solvent effect on the dissociation constants of aliphatic carboxylic acids. Australian Journal of Chemistry, 44, 1077–1084. DOI: 10.1071/CH9911077.

    Article  CAS  Google Scholar 

  • Bates, R. G. (1973). Determination of pH; theory and practice. New York, NY, USA: Wiley.

    Google Scholar 

  • Chasemi, J., Ahmadi, S., Kubista, M., & Forootan, A. (2003). Determination of acidity constants of 4-(2-pyridylazo)resorcinol in binary acetonitrile + water mixtures. Journal of Chemical & Engineering Data, 48, 1178–1182. DOI: 10.1021/je030116l.

    Article  Google Scholar 

  • Czerwiński, A., Marassi, R., & Zamponi, S. (1991). The absorption of hydrogen and deuterium in thin palladium electrodes: Part I. Acidic solutions. Journal of Electroanalytical Chemistry, 316, 211–221. DOI: 10.1016/0022-0728(91)87047-8.

    Article  Google Scholar 

  • Ertekin, K., Alp, S., & Yalcın, I. (2004). Determination of pK a values of azlactone dyes in non-aqueous media. Dyes and Pigments, 65, 33–38. DOI: 10.1016/j.dyepig.2004.06.011.

    Article  Google Scholar 

  • Fleischmann, M., & Pons, S. (1989). Electrochemically induced nuclear fusion of deuterium. Journal of Electroanalytical Chemistry, 261, 301–308. DOI: 10.1016/0022-0728(89)80006-3.

    Article  CAS  Google Scholar 

  • Galster, H. (1990). pH-Messung: Grundlagen, Methoden, Anwendungen, Geräte. Weinheim, Germany: Wiley-VCH.

    Google Scholar 

  • Greenhow, E. J., & Al-Mudarris, B. F. (1975). Metal and metalloid indicator electrodes for the non-aqueous potentiometric titration of weak acids: Comparative evaluation of group III, IV and V main-group elements. Talanta, 22, 417–424. DOI:10.1016/0039-9140(75)80089-0.

    Article  CAS  Google Scholar 

  • Gündüz, T., Gündüz, N., Kılıc, E., Köseoğlu, F., & Öztas, S. G. (1988). Titrations in non-aqueous media. Part X. Potentiometric and conductiometric titrations of amino acids with tetrabutylammonium hydroxide in pyridine and acetonitrile solvents. Analyst, 113, 715–719. DOI: 10.1039/AN9881300715.

    Article  Google Scholar 

  • Gündüz, T., Kiliç, E., Özkan, G., Awaad, M. F., & Tastekin, M. (1990). Conductimetric and potentiometric investigation of effect of acidity on formation of homoconjugates in acetonitrile solvent. Canadian Journal of Chemistry, 68, 674–678. DOI: 10.1139/v90-103.

    Article  Google Scholar 

  • Harlow, G. A., Noble, C. M., & Wyld, G. E. A. (1956). Potentiometric titration of very weak acids. Titration in ethylenediamine solution using platinum electrodes. Analytical Chemistry, 28, 784–786. DOI: 10.1021/ac60113a002.

    Article  CAS  Google Scholar 

  • Herrador, M. Á., & González, A. G. (2002). Potentiometric titrations in acetonitrile-water mixtures: evaluation of aqueous ionisation constant of ketoprofen. Talanta, 56, 769–775. DOI: 10.1016/S0039-9140(01)00607-5.

    Article  CAS  Google Scholar 

  • Hoare, J. P. (1959). Surface to volume considerations in the palladium-hydrogen-acid system. Journal of the Electrochemical Society, 106, 640–643. DOI: 10.1149/1.2427462.

    Article  CAS  Google Scholar 

  • Hoare, J. P., & Schuldiner, S. (1957). Effects of hydrogen content on the resistance and the potential in the palladium-hydrogen-acid system. The Journal of Physical Chemistry, 61, 399–402. DOI: 10.1021/j150550a004.

    Article  CAS  Google Scholar 

  • Hojo, M., & Chen, Z., (1999). Appearance of maxima on conductometric titration curves of sulfonic acids and the evidence of strong homoconjugation reactions in benzonitrile. Analytical Sciences, 15, 303–306. DOI: 10.2116/analsci.15.303.

    Article  CAS  Google Scholar 

  • Izutsu, K., Nakamura, T., Arai, T., & Ohmaki, M. (1995). Some recent studies on the use of electrochemical sensors in nonaqueous solution chemistry. Electroanalysis, 7, 884–888. DOI: 10.1002/elan.1140070916.

    Article  CAS  Google Scholar 

  • Izutsu, K., & Ohmaki, M. (1996). Acid-base equilibria in γ-butyrolactone studied by use of pH-ISFETs. Talanta, 43, 643–648. DOI: 10.1016/0039-9140(95)01799-2.

    Article  CAS  Google Scholar 

  • Izutsu, K., & Yamamoto, H. (1996). Response of an iridium oxide pH-sensor in nonaqueous solutions. Comparison with other pH-sensors. Analytical Sciences, 12, 905–909. DOI: 10.2116/analsci.12.905.

    CAS  Google Scholar 

  • Karlberg, B., & Johansson, G. (1969). Alkaline errors of glass electrodes in non-aqueous solvents. Talanta, 16, 1545–1551. DOI: 10.1016/0039-9140(69)80215-8.

    Article  CAS  Google Scholar 

  • Katz, M., & Glenn, R. A. (1952). Sodium aminoethoxide titration of weak acids in ethylenediamine. Analytical Chemistry, 24, 1157–1163. DOI: 10.1021/ac60067a024.

    Article  CAS  Google Scholar 

  • Kolthoff, I. M., Bruckenstein, S., & Chantooni, M. K., Jr. (1961). Acid-base equilibria in acetonitrile. Spectrophotometric and conductometric determination of the dissociation of various acids. Journal of the American Chemical Society, 83, 3927–3935. DOI: 10.1021/ja01480a001.

    Article  CAS  Google Scholar 

  • Kolthoff, I. M., & Chantooni, M. K. (1966). Conductometric, potentiometric, and spectrophotometric determination of dissociation constants of substituted benzoic acids in acetonitrile. The Journal of Physical Chemistry, 70, 856–866. DOI: 10.1021/j100875a039.

    Article  CAS  Google Scholar 

  • Kolthoff, I. M., & Chantooni, M. K. (1965). Calibration of the glass electrode in acetonitrile. Shape of potentiometric titration curves. Dissociation constant of picric acid. Journal of the American Chemical Society, 87, 4428–4436. DOI: 10.1021/ja00948a004.

    Article  CAS  Google Scholar 

  • Kolthoff, I. M., & Chantooni, M. K., Jr. (1975). Titration in dipolar aprotic solvents of diprotic acids as monoprotic acids. Analytical Chemistry, 47, 1921–1926. DOI: 10.1021/ac60362a001.

    Article  CAS  Google Scholar 

  • Kolthoff, I. M., & Chantooni, M. K., Jr. (1969). Homoconjugation constant of picric acid in acetonitrile. The Journal of Physical Chemistry, 73, 4029–4030. DOI: 10.1021/j100845a084.

    Article  CAS  Google Scholar 

  • Kolthoff, I. M., Chantooni, M. K., Jr., & Bhowmik, S. (1966). Acid-base properties of mono- and dinitrophenols in acetonitrile. Journal of the American Chemical Society, 88, 5430–5439. DOI: 10.1021/ja00975a011.

    Article  CAS  Google Scholar 

  • Kreshkov, A. P., Bykova, L. N., & Kazaryan, N. A. (1967). Kislotno-osnovnoe titrovanie v nevodnykh rastvorakh. Moscow, USSR: Khimia.

    Google Scholar 

  • Kurtoğlu, M., Birbiçer, N., Kimyonşen, Ü., & Serin, S. (1999). Determination of pK a values of some azo dyes in acetonitrile with perchloric acid. Dyes and Pigments, 41, 143–147. DOI: 10.1016/S0143-7208(98)00077-1.

    Article  Google Scholar 

  • Kuruoğlu, D., Canel, E., Memon, S., Yilmaz, M., & Kiliç, E. (2003). Hydrogen ion-selective poly(vinyl chloride) membrane electrode based on a calix[4]arene. Analytical Sciences, 19, 217–221. DOI: 10.2116/analsci.19.217.

    Article  Google Scholar 

  • Lewis, F. A., & Ubbelohde, A. R. (1954). Mechanisms of removal of hydrogen from palladium-hydrogen by oxidation. Journal of the Chemical Society, 1954, 1710–1716. DOI: 10.1039/JR9540001710.

    Google Scholar 

  • Lintner, C. J., Schleif, R. H., & Higuchi, T. (1950). Electrometric titration of alcohols using lithium aluminium hydride. Analytical Chemistry, 22, 534–538. DOI: 10.1021/ac60040a007.

    Article  CAS  Google Scholar 

  • Mihajlović, L., Nikolić-Mandić, S., Vukanović, B., & Mihajlović, R., (2009). Use of the sulfide mineral pyrite as electrochemical sensor in non-aqueous solutions: Potentiometric titration of weak acids in acetonitrile, propionitrile and benzonitrile. Analytical Sciences, 25, 437–441. DOI: 10.2116/analsci.25.437.

    Article  Google Scholar 

  • Mihajlović, L. V., Mihajlović, R. P., Antonijević, M. M., & Vukanović, B. V. (2004). Natural monocrystalline pyrite as a sensor in non-aqueous solution: Part I: Potentiometric titration of weak acids in N,N-dimethylformamide, methylpyrrolidone and pyridine. Talanta, 64, 879–886. DOI: 10.1016/j.talanta.2004.03.061.

    Article  Google Scholar 

  • Mihajlović, R. P., Jakšić, L. N., & Vajgand, V. V. (1992). Coulometric titrations of bases in propylene carbonate using hydrogen—palladium and deuterium—palladium generator electrodes. Talanta, 39, 1587–1590. DOI: 10.1016/0039-9140(92)80188-J.

    Article  Google Scholar 

  • Mihajlović, R. P., & Stanić Z. D. (2005). Natural monocrystalline chalcopyrite and galena as electrochemical sensors in non-aqueous solvents. Part I: potentiometric titrations of weak acids in γ-butyrolactone and propylene carbonate. Journal of Solid State Electrochemistry, 9, 558–565. DOI: 10.1007/s10008-004-0591-0.

    Article  Google Scholar 

  • Mihajlović, R. P., Vajgand, V. J., & Džudović, R. M. (1991). The application of deuterium-palladium electrodes in the coulometric-potentiometric determination of bases in ketone media. Talanta, 38, 673–675. DOI: 10.1016/0039-9140(91)80155-S.

    Article  Google Scholar 

  • Oyama, N., Hirokawa, T., Yamaguchi, S., Ushizawa, N., & Shimomura, T. (1987). Hydrogen ion selective microelectrode prepared by modifying an electrode with polymers. Analytical Chemistry, 59, 258–262. DOI: 10.1021/ac00129a009.

    Article  CAS  Google Scholar 

  • Pissinis, D., Sereno, L. E., & Marioli, J. M. (2005). Multiwavelength spectrophotometric determination of propofol acidity constant in different acetonitrile-water mixtures. Journal of the Brazilian Chemical Society, 16, 1054–1060. DOI: 10.1590/S0103-50532005000600024.

    Article  CAS  Google Scholar 

  • Sanz-Nebot, V., Valls, I., Barbero, D., & Barbosa, J. (1997). Acid-base behavior of quinolones in aqueous acetonitrile mixtures. Acta Chemica Scandinavica, 51, 896–903. DOI: 10.3891/acta.chem.scand.51-0896.

    Article  CAS  Google Scholar 

  • Shirvington, P. J. (1967). The hydrolysis of some acidic metal cations in acetonitrile containing traces of water. Australian Journal of Chemistry, 20, 447–453. DOI: 10.1071/CH9670447.

    Article  CAS  Google Scholar 

  • Vajgand, V. J., Mihajlović, R. P., Džudović, R. M., & Jakšić, L. N. (1987). Coulometric titration of salts of strong mineral acids in acetic anhydride by application of a hydrogen/palladium electrode. Analytica Chimica Acta, 202, 231–236. DOI: 10.1016/S0003-2670(00)85919-X.

    Article  CAS  Google Scholar 

  • Verma, B. C., & Sood, R. K. (1979). Determination of mercaptopyrimidines with copper(II) in acetonitrile. Talanta, 26, 906–907. DOI: 10.1016/0039-9140(79)80278-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranđel P. Mihajlović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantić, I.Ɖ., Mihajlović, R.P. & Mihajlović, L.V. A deuterium-palladium electrode as a new sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile and benzonitrile. Chem. Pap. 64, 541–549 (2010). https://doi.org/10.2478/s11696-010-0044-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0044-4

Keywords

Navigation