Skip to main content

Advertisement

Log in

Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Amide and ester conjugates of aceclofenac with polyamidoamine (PAMAM-G0) dendrimer zero generation and dextran (40 kDa) polymeric carrier, respectively, are presented. The prepared conjugates were characterized by UV, TLC, HPLC, IR, and 1H NMR spectroscopy. The average degrees of substitution of amide and ester conjugates were determined and found to be (12.5 ± 0.24) % and (7.5 ± 0.25) %, respectively. The in vitro hydrolysis studies showed that dextran ester conjugate hydrolyzed faster in a phosphate buffer solution of pH 9.0 as compared to PAMAM dendrimer G0 amide conjugate, and followed the first order kinetics. No amount of the drug was regenerated at pH 1.2 in simulated gastric fluid. The dextran conjugate showed short half-life as compared to the PAMAM dendrimer conjugate. Anti-inflammatory and analgesic activities of the dendrimer conjugate were found to be similar to those of the standard drug. Results of chronic ulceroginic activity showed deep ulceration and high ulcer index for aceclofenac, whereas lower ulcer index was found for the PAMAM dendrimer and dextran (40 kDa) conjugates. Experimental data suggest that PAMAM dendrimer and dextran (40 kDa) can be used as carriers for the sustained delivery of aceclofenac along with a remarkable reduction in gastrointestinal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asthana, A., Chauhan, A. S., Diwan, P. V., & Jain, N. K. (2005). Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic anti-inflammatory active ingredient. AAPS PharmSciTech, 6, E535–E542. DOI: 10.1208/pt060367.

    Article  Google Scholar 

  • Burkhard, H., Thomas, R., Daniel, A., Ulrike, W., Robert, R., Stephan, R., & Kay, B. (2003). Aceclofenac spares cyclooxygenase-1 as a result of limited but sustained biotransformation to diclofenac. Journal of Clinical Pharmacy and Therapeutics, 74, 222–235. DOI: 10.1016/S0009- 9236(03)00167-X.

    Article  Google Scholar 

  • Chauhan, A. S., Diwan, P. V., Jain, N. K., & Tomalia, D. A. (2009). Unexpected in vivo anti-inflammatory activity observed for simple, surface functionalized poly(amidoamine) dendrimers. Biomacromolecules, 10, 1195–1202. DOI: 10.1021/bm9000298.

    Article  CAS  Google Scholar 

  • Cheng, Y., Gao, Y., Rao, T., Li, Y., & Xu, T. (2007a). Dendrimer-based prodrugs: Design, synthesis, screening and biological evaluation. Combinatorial Chemistry & High Throughput Screening, 10, 336–349. DOI: 10.2174/138620707781662808.

    Article  CAS  Google Scholar 

  • Cheng, Y., Man, N., Xu, T., Fu, R., Wang, X., Wang, X., & Wen, L. (2007b). Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. Journal of Pharmaceutical Sciences, 96, 595–602. DOI: 10.1002/jps.20745.

    Article  CAS  Google Scholar 

  • Cheng, Y., & Xu, T. (2008). The effect of dendrimers on the pharmacodynamic and pharmacokinetic behaviors of noncovalently or covalently attached drugs. European Journal of Medicinal Chemistry, 43, 2291–2297. DOI: 10.1016/j.ejmech.2007.12.021.

    Article  CAS  Google Scholar 

  • Cheng, Y., & Xu, T. (2005). Dendrimers as potential drug carriers. Part I. Solubilization of non-steroidal anti-inflammatory drugs in the presence of polyamidoamine dendrimers. European Journal of Medicinal Chemistry, 40, 1188–1192. DOI:10.1016/j.ejmech.2005.06.010.

    Article  CAS  Google Scholar 

  • Cheng, Y., Xu, T., & Fu, R. (2005). Polyamidoamine dendrimers used as solubility enhancers of ketoprofen. European Journal of Medicinal Chemistry, 40, 1390–1393. DOI:10.1016/j.ejmech.2005.08.002.

    Article  CAS  Google Scholar 

  • Cheng, Y., Xu, Z., Ma, M., & Xu, T. (2008). Dendrimer as drug carrier: Application in different routes of drug administration. Journal of Pharmaceutical Sciences, 97, 123–143. DOI: 10.1002/jps.21079.

    Article  CAS  Google Scholar 

  • Davies, O. L., Raventós, J., & Walpole, A. L. (1946). A method for the evaluation of analgesic activity using rats. British Journal of Pharmacology, 1, 255–264.

    CAS  Google Scholar 

  • Feldman, M., & McMahon, A. T. (2000). Do cyclooxygenase-2 inhibitors provide benefits similar to those of traditional nonsteroidal anti-inflammatory drugs, with less gastrointestinal toxicity? Annals of Internal Medicine, 132, 134–143.

    CAS  Google Scholar 

  • Gajbhiye, V., Kumar, P. V., Tekade, R. K., & Jain, N. K. (2009). PEGylated PPI dendritic architectures for sustained delivery of H2 receptor antagonist. European Journal of Medicinal Chemistry, 44, 1155–1166. DOI: 10.1016/j.ejmech.2008.06.012.

    Article  CAS  Google Scholar 

  • Giannuzzo, M., Corrente, F., Feeney, M., Paoletti, L., Paolicelli, P., Tita, B., Vitali, F., & Casadei, M. A. (2008). pH-Sensitive hydrogels of dextran: Synthesis, characterization and in vivo studies. Journal of Drug Targeting, 16, 649–659. DOI: 10.1080/10611860802201191.

    Article  CAS  Google Scholar 

  • Gierse, J. K., Koboldt, C. M., Walker, M. C., Seibert, K., & Isakson, P. C. (1999). Kinetic basis for selective inhibition of cyclo-oxygenases. Biochemical Journal, 339, 607–614. DOI:10.1042/0264-6021:3390607.

    Article  CAS  Google Scholar 

  • Gurdag, S., Khandare, J., Stapels, S., Matherly, L. H., & Kannan, R. M. (2006). Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. Bioconjugate Chemistry, 17, 275–283. DOI: 10.1021/bc0501855.

    Article  CAS  Google Scholar 

  • Hoste, K., De Winne, K., & Schacht, E. (2004). Polymeric prodrugs. International Journal of Pharmaceutics, 277, 119–131. DOI: 10.1016/j.ijpharm.2003.07.016.

    Article  CAS  Google Scholar 

  • Jung, Y. J., Lee, J. S., Kim, H. H., Kim, Y. T., & Kim, Y. M. (1998). Synthesis and properties of dextran-5-aminosalicyclic acid ester as a potential colon-specific prodrug of 5-aminosalicyclic acid. Archives of Pharmacal Research, 21, 179–186.

    Article  CAS  Google Scholar 

  • Khandare, J., & Minko, T. (2006). Polymer-drug conjugates: Progress in polymeric prodrugs. Progress in Polymer Science, 31, 359–397. DOI: 10.1016/j.progpolymsci.2005.09.004.

    Article  CAS  Google Scholar 

  • Larsen, C. (1990). Dextran prodrugs—Physicochemical and chemical aspects in relation to in-vivo properties. Unpublished DSc. thesis. Copenhagen, Denmark: Villadsen & Christensen.

    Google Scholar 

  • Larsen, C., Harboe, E., Johansen, M., & Olesen, H. P. (1989). Macromolecular prodrugs. XVI. Colon-targeted delivery—comparison of the rate of release of naproxen from dextran ester prodrugs in homogenates of various segments of the pig gastrointestinal (GI) tract. Pharmaceutical Research, 6, 995–999. DOI: 10.1023/A:1015914101233.

    Article  CAS  Google Scholar 

  • Lee, J. S., Jung, Y. J., Doh, M. J., & Kim, Y. M. (2001). Synthesis and properties of dextran-nalidixic acid ester as a colon-specific prodrug of nalidixic acid. Drug Development and Industrial Pharmacy, 27, 331–336. DOI: 10.1081/DDC-100103732.

    Article  CAS  Google Scholar 

  • Man, N., Cheng, Y., Xu, T., Ding, Y., Wang, X., Li, Z., Chen, Z., Huang, G., Shi, Y., & Wen, L. (2006). Dendrimers as potential drug carriers. Part II. Prolonged delivery of ketoprofen by in vitro and in vivo studies. European Journal of Medicinal Chemistry, 41, 670–674. DOI: 10.1016/j.ejmech.2006.01.001.

    Article  CAS  Google Scholar 

  • Mehvar, R. (2000). Dextrans for targeted and sustained delivery of therapeutic and imaging agents. Journal of Controlled Release, 69, 1–25. DOI: 10.1016/S0168-3659(00)00302-3.

    Article  CAS  Google Scholar 

  • Mehvar, R. (1999). Simultaneous analysis of dextran-methylprednisolone succinate methylprednisolone succinate, and methylprednisolone by size-exclusion chromatography. Journal of Pharmaceutical and Biomedical Analysis, 19, 785–792. DOI: 10.1016/S0731-7085(98)00308-2.

    Article  CAS  Google Scholar 

  • Mehvar, R., Robinson, M. A., & Reynolds, J. M. (1994). Molecular weight dependent tissue accumulation of dextrans: in vivo studies in rats. Journal of Pharmaceutical Sciences, 83, 1495–1499. DOI: 10.1002/jps.2600831024.

    Article  CAS  Google Scholar 

  • Musmade, P., Subramanian, G., & Srinivasan, K. K. (2007). High-performance liquid chromatography and pharmacokinetics of aceclofenac in rats. Analytica Chimica Acta, 585, 103–109. DOI: 10.1016/j.aca.2006.11.080.

    Article  CAS  Google Scholar 

  • Najlah, M., Freeman, S., Attwood, D., & D’Emanuele, A. (2006). Synthesis, characterization and stability of dendrimer prodrugs. International Journal of Pharmaceutics, 308, 175–182. DOI: 10.1016/j.ijpharm.2005.10.033.

    Article  CAS  Google Scholar 

  • Rainsford, K. D. (1975). A synergistic interaction between aspirin, or other non-steroidal anti-inflammatory drugs, and stress which produces severe gastric mucosal damage in rats and pigs. Agents actions, 5, 553–558. DOI:10.1007/BF01972694.

    Article  CAS  Google Scholar 

  • Semble, E. L., Wu, W. C. (1987). Antiinflammatory drugs and gastric mucosal damage. Seminars in Arthritis and Rheumatism, 16, 271–286. DOI: 10.1016/0049-0172(87)90005-9.

    Article  CAS  Google Scholar 

  • Shrivastava, S. K., Jain, D. K., & Trivedi, P. (2003a). Dextranspotential polymeric drug carriers for suprofen. Die Pharmazie, 58, 804–806.

    CAS  Google Scholar 

  • Shrivastava, S. K., Jain, D. K., & Trivedi, P. (2003b). Dextranspotential polymeric drug carriers for flurbiprofen. Die Pharmazie, 58, 389–391.

    CAS  Google Scholar 

  • Shrivastava, S. K., Shrivastava, P. K., Jain, D. K., Trivedi, P. (2009). Flurbiprofen- and suprofen-dextran conjugates: Synthesis, characterization and biological evaluation. Tropical Journal of Pharmaceutical Research, 8, 221–229.

    CAS  Google Scholar 

  • Svenson, S., & Tomalia, D. A. (2005). Dendrimers in biomedical applications—reflections on the field. Advanced Drug Delivery Reviews, 57, 2106–2129. DOI: 10.1016/j.addr.2005.09.018.

    Article  CAS  Google Scholar 

  • Sweetman, S. C. (2007). Martindale: The complete drug reference (35th ed., pp. 11–12). London, UK: Pharmaceutical Press.

    Google Scholar 

  • Tomalia, D. A., & Fréchet, J. M. (2005). Introduction to “dendrimers and dendritic polymers”. Progress in Polymer Science, 30, 217–219. DOI: 10.1016/j.progpolymsci.2005.03.003.

    Article  CAS  Google Scholar 

  • Tomalia, D. A., Naylor, A. M., & Goddard, W. A. (1990). Starburst dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angewandte Chemie International Edition, 29, 138–175. DOI: 10.1002/anie.199001381.

    Article  Google Scholar 

  • Vane, J. (1994). Towards a better aspirin. Nature, 367, 215–216. DOI: 10.1038/367215a0.

    Article  CAS  Google Scholar 

  • Warner, T. D., Giuliano, F., Vojnovic, I., Bukasa, A., Mitchell, J. A., & Vane, J. R. (1999). Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: A full in vitro analysis. Proceedings of the National Academy of Sciences, 96, 7563–7568.

    Article  CAS  Google Scholar 

  • Winter, C. A., Risley, E. A., & Nuss, G.W. (1962). Carrageenan induced oedema in the hind paw of the rat as an assay for anti-inflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine, 111, 544–547.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhat K. Shrivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrivastava, P.K., Singh, R. & Shrivastava, S.K. Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation. Chem. Pap. 64, 592–601 (2010). https://doi.org/10.2478/s11696-010-0042-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0042-6

Keywords

Navigation