Skip to main content
Log in

Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Two simple, sensitive, and selective spectrophotometric methods for the determination of 5-(aminosulfonyl)-4-chloro-2-((2-furanylmethyl)amino)benzoic acid (furosemide, FUR) are described. The methods are based on acid hydrolysis of FUR to free primary aromatic amine and diazotization followed by coupling with N-1-napthylethylene diamine (NEDA) (method A) or 4,5-dihydroxynaphthalene-2,7-disulfonic acid (chromotropic acid, CTA) (method B). The colored reaction product can be measured spectrophotometrically at 520 nm (method A) or 500 nm (method B). Beer’s law is obeyed over the ranges of 1.75–21.0 μg mL−1 and 2.5–30.0 μg mL−1, for method A and method B, respectively. Apparent molar absorptivities and Sandell’s sensitivities (in L mol−1 cm−1 and μg cm−2 per 0.001 absorbance unit, respectively) were 1.34 × 104 and 0.0253 using NEDA as the coupling agent, and 8.5 × 103 and 0.0389 using CTA for the same purpose. Analysis of solutions containing seven different concentrations of FUR gave a correlation coefficient of 0.9979 using NEDA and 0.9984 using CTA, while the slope and the correlation coefficient of the regression equation were calculated. The reaction stoichiometry in both methods was evaluated by the limiting logarithmic method and was found to be 1: 1 (diazotized FUR: NEDA or diazotized FUR: CTA). The methods were successfully applied to the determination of FUR in spiked human urine and in pharmaceutical formulations. The recovery of FUR from spiked urine was satisfactory resulting in the values of (109.4 ± 4.37) % using NEDA and (113.0 ± 4.74) % using CTA. Results of the analysis of pharmaceuticals demonstrated that the proposed procedures are at least as accurate and precise as the official method while a statistical analysis indicated that there was no significant difference between the results obtained by the proposed methods and those of the official method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Hamid, M. E. (2000). High-performance liquid chromatography-mass spectrometric analysis of furosemide in plasma and its use in pharmacokinetic studies. Il Farmaco, 55, 448–454. DOI: 10.1016/S0014-827X(00)00064-1.

    Article  CAS  Google Scholar 

  • Abou-Auda, H. S., Al-Yamani, M. J., Morad, A. M., Bawazir, S. A., Khan S. Z., & Al-Khamis, K. I. (1998). High-performance liquid chromatographic determination of furosemide in plasma and urine and its use in bioavailability studies. Journal of Chromatography B: Biomedical Sciences and Applications, 710, 121–128. DOI: 10.1016/S0378-4347(98)00058-9.

    Article  CAS  Google Scholar 

  • Basavaiah, K., Chandrashekar, U., & Nagegowda, P. (2005). Rapid titrimetric and spectrophotometric determination of frusemide (furosemide) in formulations using bromatebromide mixture and methyl orange. Indian Journal of Chemical Technology, 12, 149–155.

    CAS  Google Scholar 

  • Carda-Broch, S., Esteve-Romero, J., Ruiz-Angel, M. J., & García-Alvarez-Coque, M. C. (2002). Determination of furosemide in urine samples by direct injection in a micellar liquid chromatographic system. Analyst, 127, 29–34. DOI: 10.1039/b108358a.

    Article  CAS  Google Scholar 

  • Espinosa Bosch, M., Ruiz Sánchez, A. J., Sánchez Rojas, F., & Bosch Ojeda, C. (2008). Recent developments in analytical determination of furosemide. Journal of Pharmaceutical and Biomedical Analysis, 48, 519–532. DOI: 10.1016/j.jpba.2008.07.003.

    Article  CAS  Google Scholar 

  • European Directorate for the Quality of Medicines (2001). European pharmacopoeia (IV ed., pp. 1228–1229). Strasbourg, France: Council of Europe.

    Google Scholar 

  • European Medicines Agency (2005). Validation of analytical procedures: Text and methodology Q2(R 1). London, UK: European Medicines Agency.

    Google Scholar 

  • García, M. S., Sanchez-Pedreño, C., Albero M. I., & Ródenas, V. (1997). Flow-injection spectrophotometric determination of frusemide or sulphathiazole in pharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis, 15, 453–459. DOI: 10.1016/S0731-7085(96)01874-2.

    Article  Google Scholar 

  • Gomez, C. G., von Plessing, C. R., Godoy, C. G. M., Reinbach, R. H., & Godoy, R. R. (2005). Method validation for the determination of furosemide in plasma by liquid-liquid extraction and high-performance liquid chromatography with fluorescence detection. Journal of the Chilean Chemical Society, 50, 479–482. DOI:10.4067/S0717-97072005000200008.

    Google Scholar 

  • Gotardo, M. A., Gigante, A. C., Pezza, L., & Pezza, H. R. (2004). Determination of furosemide in pharmaceutical formulations by diffuse reflectance spectroscopy. Talanta, 64, 361–365. DOI:10.1016/j.talanta.2004.02.034.

    Article  CAS  Google Scholar 

  • Gölcüu, A. (2006). Spectrophotometric determination of furosemide in pharmaceutical dosage forms using complex formation with Cu(II). Journal of Analytical Chemistry, 61, 748–754. DOI: 10.1134/S1061934806080053

    Article  Google Scholar 

  • Guzmán, A., Agüí, L., Pedrero, M., Yáñez-Sedeño, P., & Pingarrón, J. M. (2003). Flow injection and HPLC determination of furosemide using pulsed amperometric detection at microelectrodes. Journal of Pharmaceutical and Biomedical Analysis, 33, 923–933. DOI: 10.1016/S0731-7085(03)00422-9.

    Article  Google Scholar 

  • Higuchi, T., & Brochmann-Hanssen, E. (1997). Pharmaceutical analysis (5th ed., pp. 142). New Delhi, India: CBS Publishers.

    Google Scholar 

  • Ioannou, P. C., Andrikopoulou, D. A., Glynou, K. M., Tzompanaki, G. M., & Rusakova, N. V. (1998). Spectrofluorimetric determination of anthranilic acid derivatives based on terbium sensitized fluorescence. Analyst, 123, 2839–2843. DOI: 10.1039/a806093b.

    Article  CAS  Google Scholar 

  • Issopoulos, P. B. (1989). Spectrophotometric determination of microquantities of frusemide using iso- and heteropolyanions of molybdenum(VI) as oxidizing agents. Fresenius’ Journal of Analytical Chemistry, 334, 554–557. DOI: 10.1007/BF00483576.

    Article  CAS  Google Scholar 

  • Jankowski, A., Skorek-Jankowska, A., & Lamparczyk, H. (1997). Determination and pharmacokinetics of a furosemide-amiloride drug combination. Journal of Chromatography B: Biomedical Sciences and Applications, 693, 383–391. DOI: 10.1016/S0378-4347(97)00055-8.

    Article  CAS  Google Scholar 

  • Llorent-Martínez, E. J., Ortega-Barrales, P., & Molina-Díaz, A. (2005). Multicommuted flow-through fluorescence optosensor for determination of furosemide and triamterene. Analytical and Bioanalytical Chemistry, 383, 797–803. DOI: 10.1007/s00216-005-0079-5.

    Article  Google Scholar 

  • Martindale, W. (1989). In J. E. F. Reynolds (Ed.), Martindale: The extra pharmacopoeia (29th ed., pp. 977–978, 987–991). London, UK: The Pharmaceutical Press.

    Google Scholar 

  • Mendham, J., Denney, R. C., Barnes, J. D., & Thomas, M. (2004). Vogel’s textbook of quantitative chemical analysis (6th ed., pp. 88). Harlow, UK: Pearson Education.

    Google Scholar 

  • Miller, J. N., & Miller, J. C. (2000). Statistics and chemometrics for analytical chemistry (5th ed.). Harlow, UK: Pearson Education.

    Google Scholar 

  • Millership, J. S., Parker, C., & Donnelly, D. (2005). Ratio spectra derivative spectrophotometry for the determination of furosemide and spironolactone in a capsule formulation. Il Farmaco, 60, 333–338. DOI:10.1016/j.farmac.2005.02.001.

    Article  CAS  Google Scholar 

  • Mishra, P., Katrolia, D., & Agrawal, R. K. (1990). A simple colorimetric determination of furosemide in dosage forms. Indian Journal of Pharmaceutical Sciences, 52, 155–157.

    Google Scholar 

  • Ptǎček, P., Vyhnálek, O., Breuel, H. P., & Macek, J. (1996). Determination of furosemide in plasma and urine by gas chromatography/mass spectrometry. Arzneimittelforschung, 46, 277–283.

    Google Scholar 

  • Reeuwijk, H. J. E. M., Tjaden, U. R., & van der Greef, J. (1992). Simultaneous determination of furosemide and amiloride in plasma using high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications, 575, 269–274. DOI: 10.1016/0378-4347(92)80155-J.

    Article  CAS  Google Scholar 

  • Rose, J. (1964). Advanced physico-chemical experiments (pp. 67). London, UK: Pitman.

    Google Scholar 

  • Sastry, C. S. P., Prasad, T. N. V., Sastry, B. S., & Rao, E. V. (1988). Spectrophotometric methods for the determination of some diuretics using 3-methyl-2-benzothiazolinone hydrazone. Analyst, 113, 255–258. DOI: 10.1039/AN9881300255.

    Article  CAS  Google Scholar 

  • Sastry, C. S. P., Suryanarayana, M. V., & Tipirneni, A. S. R. P. (1989). Application of p-N,N-dimethylphenylenediamine dihydrochloride for the determination of some diuretics. Talanta, 36, 491–494. DOI: 10.1016/0039-9140(89)80234-6.

    Article  CAS  Google Scholar 

  • Semaan, F. S., & Cavalheiro, É. T. G. (2006). Spectrophotometric determination of furosemide based on its complexation with Fe(III) in ethanolic medium using a flow injection procedure. Analytical Letters, 39, 2557–2567. DOI: 10.1080/00032710600824698.

    Article  CAS  Google Scholar 

  • Semaan, F. S., Neto, A. J. S., Lanças, F.M., & Cavalheiro, É. T. G. (2005a). Rapid HPLC-DAD determination of furosemide in tablets using a short home-made column. Analytical Letters, 38, 1651–1658. DOI: 10.1081/AL-200065813.

    Article  CAS  Google Scholar 

  • Semaan, F. S., De Sousa, R. A., & Cavalheiro, E. T. G. (2005b). Flow injection spectrophotometric determination of furosemide in pharmaceuticals by the bleaching of a permanganate carrier solution. Journal of Flow Injection Analysis, 22, 34–37.

    CAS  Google Scholar 

  • Semaan, F. S., Nogueira, P. A., & Cavalheiro, É. T. G. (2008). Flow-based fluorimetric determination of furosemide in pharmaceutical formulations and biological samples: use of micelar media to improve sensitivity. Analytical Letters, 41, 66–79. DOI: 10.1080/00032710701746782.

    Article  CAS  Google Scholar 

  • Shabir, G. A. (2003). Validation of high-performance liquid chromatography methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonization. Journal of Chromatography A, 987, 57–66. DOI: 10.1016/S0021-9673(02)01536-4.

    Article  CAS  Google Scholar 

  • Shah, J., Jan, M. R., & Khan, M. A. (2005). Determination of furosemide by simple diazotization method in pharmaceutical preparations. Journal of the Chinese Chemical Society, 52, 347–352.

    CAS  Google Scholar 

  • Sevillano-Cabeza, A., Campíns-Falcó, P., & Serrador-García, M. C. (1997). Extractive-spectrophotometric determination of furosemide with sodium 1,2-naphthoquinone-4-sulphonate in pharmaceutical formulations. Analytical Letters, 30, 91–107. DOI: 10.1080/00032719708002293.

    CAS  Google Scholar 

  • Tescarollo Dias, I. L., Martins, J. L. S., & de Oliveira Neto, G. (2005). Furosemide determination by first-derivative spectrophotometric method. Analytical Letters, 38, 1159–1116. DOI: 10.1081/AL-200057227.

    Google Scholar 

  • The British Pharmacopoeia Commission (2002). The British pharmacopoeia (pp. 809–811, 2183–2184). London, UK: The Stationary Office.

    Google Scholar 

  • The United States Pharmacopoeial Convention (2000). The United States pharmacopoeia XXIV (pp. 756). Rockville, MD, USA: United States Pharmacopoeial Convention.

    Google Scholar 

  • Živanović, L., Agatonović, S., & Radulović, D. (1990). Spectrophotometric determination of furosemide as its Fe(III) complex in pharmaceutical preparations. Microchimica Acta, 100, 49–54. DOI: 10.1007/BF01244497.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanakapura Basavaiah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tharpa, K., Basavaiah, K. & Vinay, K.B. Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals. Chem. Pap. 64, 415–423 (2010). https://doi.org/10.2478/s11696-010-0027-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0027-5

Keywords

Navigation