Skip to main content
Log in

Prediction of liquid-liquid flow in an SMX static mixer using large eddy simulations

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The main purpose of the paper is to apply the large eddy simulations (LES) technique and to verify its use as a predicting tool for turbulent liquid-liquid flow in an SMX static mixer. LES modeling was carried out using the Smagorinsky-Lilly model of the turbulent subgrid viscosity for the Reynolds number of 5000 and 10000. The continuous phase was water and the dispersed phase was silicon oil. The investigation covers the effects of the density ratio between the phases. Three different cases of liquid densities were considered. The dispersed phase concentration distribution in the mixer cross-sections was compared with the corresponding time averaged results obtained formerly for the same configuration in a steady-state simulation using the standard RANS approach with the k-ɛ model. The dependency of the standard deviation of the dispersed phase concentration on the distance from the mixer inlet and the impact of the centrifugal force on the phase concentration distribution were investigated. The presented results for the SMX static mixer confirm conclusions of previous studies by Jaworski et al. (2006) obtained for a Kenics static mixer and show less a pronounced influence of the centrifugal force on the phase concentration distribution of the LES results in comparison to the RANS case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allocca, P. T. (1982). Mixing efficiency of static mixing units in laminar flow. Fiber Producer, 8, 12–19.

    Google Scholar 

  • Cybulski, A., & Werner, K. (1986). Static mixers — criteria for applications and selection. International Chemical Engineering, 26, 171–180.

    Google Scholar 

  • Fourcade, E., Wadley, R., Hoefsloot, H. C. J., Green, A., & Iedema, P. D. (2001). CFD calculation of laminar striation thinning in static mixer reactors. Chemical Engineering Science, 56, 6729–6741. DOI: 10.1016/S0009-2509(01)00297-4.

    Article  CAS  Google Scholar 

  • Fradette, L., Li, H. Z., Choplin, L., & Tanguy, P. (1998). 3D finite element simulation of fluid flow through a SMX static mixer. Computers & Chemical Engineering, 22, S759–S761. DOI: 10.1016/S0098-1354(98)00142-2.

    Article  CAS  Google Scholar 

  • Grosz-Roll, F. (1980). Assessing homogeneity in motionless mixers. International Chemical Engineering, 20, 542–549.

    Google Scholar 

  • Heniche, M., Tanguy, P. A., Reeder, M. F., & Fasano, J. B. (2005). Numerical investigation of blade shape in static mixing. AIChE Journal, 51, 44–58. DOI: 10.1002/aic.10341.

    Article  CAS  Google Scholar 

  • Hirschberg, S., Koubek, R., Moser, F., & Schock, J. (2009). An improvement of the Sulzer SMXTM static mixer significantly reducing the pressure drop. Chemical Engineering Research and Design, 87, 524–532. DOI: 10.1016/j.cherd.2008.12.021.

    Article  CAS  Google Scholar 

  • Hirschberg, S., Mathys, P., & Rutti, A. (2006). Validation of CFD simulations with LIF data for the Sulzer mixers SMX and SMR. In Proceedings of the 12th European Conference on Mixing, 27–30 June 2006 (Hirschberg.pdf, pp. 1–8). Bologna, Italy: The Italian Association of Chemical Engineering.

    Google Scholar 

  • Jaworski, Z., Murasiewicz, H., Pianko-Oprych, P., & Bakker, M. (2006). Large Eddy Simulations of the turbulent liquid-liquid flow in a Kenics static mixer. In Proceedings of the 10th International Conference Multiphase Flow in Industrial Plant, 20–22 September 2006 (Jaworski.pdf, pp. 161–170). Tropea, Italy: Italian Association of Industrial Plant Engineering.

    Google Scholar 

  • Jaworski, Z., & Murasiewicz, H. (2009). CFD simulations of the turbulent liquid-liquid flow in a Kenics static mixer. Multiphase Science and Technology, 21, 37–50. DOI: 10.1615/MultScienTechn.v21.i1-2.40.

    Article  CAS  Google Scholar 

  • Kalbitz, H., & Bohnet, M. (1991). Einflu auf den Wärmeüubergang und den Druckverlust in Rohrwärmeaustauschern. Chemie Ingenieur Technik, 63, 270–271. DOI: 10.1002/cite.330630325.

    Article  CAS  Google Scholar 

  • Lauder, B. E., & Spalding, D. P. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269–289. DOI: 10.1016/0045-7825(74)90029-2.

    Article  Google Scholar 

  • Li, H. Z., Fasol, C., & Chopin, L. (1997). Pressure drop of Newtonian and non-Newtonian fluids across a Sulzer SMX static mixer. Chemical Engineering Research and Design, 75, 792–796. DOI: 10.1205/026387697524461.

    Article  CAS  Google Scholar 

  • Liu, S., Hrymak, A. N., & Wood, P. E. (2006a). Design modifications to SMX static mixer for improving mixing. AIChE Journal, 52, 150–157. DOI: 10.1002/aic.10608.

    Article  CAS  Google Scholar 

  • Liu, S., Hrymak, A. N., & Wood, P. E. (2006b). Laminar mixing of shear thinning fluids in a SMX static mixer. Chemical Engineering Science, 61, 1753–1759. DOI: 10.1016/j.ces.2005.10.026.

    Article  CAS  Google Scholar 

  • Manileve, C., & Pacek, A. W. (2000). Droplet break-up within static mixers. Birmingham, UK: The University of Birmingham. (Internal report, unpublished results).

    Google Scholar 

  • Pahl, M. H., & Muschelknautz, E. (1982). Static mixers and their applications. International Chemical Engineering, 22, 197–205.

    Google Scholar 

  • Pianko-Oprych, P., & Jaworski, Z. (2004a). The numerical modelling of two-phase flows in static mixers. Inżynieria Chemiczna i Procesowa, 25, 341–362.

    CAS  Google Scholar 

  • Pianko-Oprych, P., & Jaworski, Z. (2004b). The CFD modelling of the turbulent liquid-liquid flow in an SMX mixer. The impact of centrifugal force on concentration fields. In Proceedings of the 9th International Conference Multiphase Flow in Industrial Plants, 20–21 September 2004 (Paper 6.1., pp. 13–26).

  • Rome, Italy. Rauline, D., Le Blévec, J. M., Bousquet, J., & Tanguy, P. A. (2000). A comparative assessment of the performance of the Kenics and SMX static mixers. Chemical Engineering Research and Design, 78, 389–396. DOI: 10.1205/026387600527284.

    Article  CAS  Google Scholar 

  • Sagaut, P. (2002). Large eddy simulation for incompressible flows. Berlin, Germany: Springer Verlag.

    Google Scholar 

  • Streiff, F. A., Jaffer, S., & Schneider, G. (1999). The design and application of static mixer technology. In Proceedings of the 3rd International Symposium on Mixing in Industrial Processes, 26–27 September 1999 (pp. 107–114). Osaka, Japan: European Federation of Chemical Engineering.

    Google Scholar 

  • Thakur, R. K., Vial, Ch., Nigam, K. D. P., Nauman, E. B., & Djelveh, G. (2003). Static mixers in the process industries — A review. Chemical Engineering Research and Design, 81, 787–822. DOI: 10.1205/026387603322302968.

    Article  CAS  Google Scholar 

  • Visser, J. E., Rozendal, P. F., Hoogstraten, H. W., & Beenackers, A. A. C. M. (1999). Three-dimensional numerical simulation of flow and heat transfer in the Sulzer SMX static mixer. Chemical Engineering Science, 54, 2491–2500. DOI: 10.1016/S0009-2509(98)00536-3.

    Article  CAS  Google Scholar 

  • Wilcox, D. C. (1993). Turbulence modelling for CFD. La Cañada, CA, USA: DCW Industries.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulina Pianko-Oprych.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pianko-Oprych, P., Jaworski, Z. Prediction of liquid-liquid flow in an SMX static mixer using large eddy simulations. Chem. Pap. 64, 203–212 (2010). https://doi.org/10.2478/s11696-009-0112-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0112-9

Keywords

Navigation