Skip to main content
Log in

Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, urease was immobilized in a polymer network obtained by complexation of poly(1-vinyl imidazole) (PVI) with poly(acrylic acid) (PAA). Preparation of the polymer network was monitored by FT-IR spectroscopy. Scanning electron microscopy (SEM) revealed that enzyme immobilization had a strong effect on film morphology. Proton conductivity of the PVI/PAA network was measured via impedance spectroscopy under humidified conditions. Values of the Michaelis-Menten constant (K M) for immobilized urease were higher than for the free enzyme, indicating a decreased affinity of the enzyme to its substrate. The basic characteristics (pHopt, pHstability, T opt, T stability, reusability, and storage stability) of immobilized urease were determined. The results show that the PAA/PVI polymer network is suitable for enzyme immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arslan, A., Kıralp, S., Toppare, L., & Bozkurt, A. (2006). Novel conducting polymer electrolyte biosensor based on poly(1-vinylimidazole) and poly(acrylic acid) networks. Langmuir, 22, 2912–2915. DOI: 10.1021/la0530539.

    Article  CAS  Google Scholar 

  • Avnir, D., Braun, S., Lev, O., & Ottolenghi, M. (1994). Enzymes and other proteins entrapped in sol-gel materials. Chemistry of Materials, 6, 1605–1614. DOI: 10.1021/cm00046a008.

    Article  CAS  Google Scholar 

  • Bozkurt, A., & Meyer, W. H. (2001a). Proton conducting blends of poly(4-vinylimidazole) with phosphoric acid. Solid State Ionics, 138, 259–265. DOI: 10.1016/S0167-2738(00)00779-7.

    Article  CAS  Google Scholar 

  • Bozkurt, A., & Meyer, W. H. (2001b). Proton-conducting poly(vinylpyrrolidon)-polyphosphoric acid blends. Journal of Polymer Science Part B: Polymer Physics, 39, 1987–1994. DOI: 10.1002/polb.1174.

    Article  CAS  Google Scholar 

  • Bozkurt, A., Meyer, W. H., Gutmann, J., & Wegner, G. (2003a). Proton conducting copolymers on the basis of vinylphosphonic acid and 4-vinylimidazole. Solid State Ionics, 164, 169–176. DOI: 10.1016/j.ssi.2003.09.005.

    Article  CAS  Google Scholar 

  • Bozkurt, A., Meyer, W. H., & Wegner, G. (2003b). PAA/imidazol-based proton conducting polymer electrolytes. Journal of Power Sources, 123, 126–131. DOI: 10.1016/S0378-7753(03)00560-3.

    Article  CAS  Google Scholar 

  • Chellapandian, M., & Kirshan, M. R. V. (1998). Chitosanpoly (glycidyl methacrylate) copolymer for immobilization of urease. Process Biochemistry, 33, 595–600. DOI: 10.1016/S0032-9592(98)80001-0.

    Article  CAS  Google Scholar 

  • Dhawan, G., Sumana, G., & Malhotra, B. D. (2009). Recent developments in urea biosensors. Biochemical Engineering Journal, 44, 42–52. DOI: 10.1016/j.bej.2008.07.004.

    Article  CAS  Google Scholar 

  • Günday, S. T., & Bozkurt, A. (2008). Preparation and proton conductivity of polymer electrolytes based on alginic acid and 1,2,4-triazole. Polymer Journal, 40, 104–108. DOI: 10.1295/polymj.PJ2007152.

    Article  CAS  Google Scholar 

  • Kartal, M., Kayahan, S. K., Bozkurt, A., & Toppare, L. (2008). Entrapment of invertase in an interpenetrated polymer network of alginic acid and poly (1-vinylimidazole). Talanta, 77, 659–662. DOI: 10.1016/j.talanta.2008.07.017.

    Article  CAS  Google Scholar 

  • Kartal, M., Kayahan, S. K., Bozkurt. A., & Toppare, L. (2009). The synthesis of complex polymer electrolytes based on alginic acid and poly(1-vinylimidazole) and application in tyrosinase immobilization. Polymer Journal, 41, 46–50. DOI: 10.1295/polymj.PJ2008130.

    Article  CAS  Google Scholar 

  • Krajewska, B. (2009a). Ureases I. Functional, catalytic and kinetic properties: A review. Journal of Molecular Catalysis B: Enzymatic, 59, 9–21. DOI: 10.1016/j.molcatb.2009.01.003.

    Article  CAS  Google Scholar 

  • Krajewska, B. (2009b). Ureases. II. Properties and their customizing by enzyme immobilizations: A review. Journal of Molecular Catalysis B: Enzymatic, 59, 22–40. DOI: 10.1016/j.molcatb.2009.01.004.

    Article  CAS  Google Scholar 

  • Krajewska, B., Leszko, M., & Zaborska, W. (1990). Urease immobilized on chitosan membrane: Preparation and properties. Journal of Chemical Technology & Biotechnology, 48, 337–350. DOI: 10.1002/jctb.280480309.

    Article  CAS  Google Scholar 

  • Kreuer, K.-D. (1996). Proton conductivity: Materials and applications. Chemistry of Materials, 8, 610–641. DOI: 10.1021/cm950192a.

    Article  CAS  Google Scholar 

  • Kreuer, K. D. (2002). On solids with liquid like properties and the challenge to develop new proton-conducting separator materials for intermediate-temperature fuel cells. A European Journal of Chemical Physics and Physical Chemistry, 3, 771–775. DOI: 10.1002/1439-7641(20020916)3:9〈771:: AID-CPHC771〉3.0.CO;2-Y.

    Article  CAS  Google Scholar 

  • Kreuer, K. D. (1998). In: B. V. R. Chowdari, K. Lal, & S. A. Agnihotry (Eds.). Solid state ionics: science and technology. Singapore: World Scientific.

    Google Scholar 

  • Kuswandi, B., Andres, R., & Narayanaswamy, R. (2001). Optical fibre biosensors based on immobilised enzymes. The Analyst, 126, 1469–1491. DOI: 10.1039/b008311i.

    Article  CAS  Google Scholar 

  • Laska, J., Wlodarczyk, J., & Zaborska, W. (1999). Polyaniline as a support for urease immobilization. Journal of Molecular Catalysis B: Enzymatic, 6, 549–553. DOI: 10.1016/S1381-1177(99)00013-2.

    Article  CAS  Google Scholar 

  • Li, X., Goh, S. H., Lai, Y. H., & Wee, A. T. S. (2001). Miscibility and interactions in blends of carboxyl-containing polysiloxane with poly(1-vinylimidazole). Polymer, 42, 5463–5469. DOI: 10.1016/S0032-3861(01)00015-5.

    Article  CAS  Google Scholar 

  • Lowry, O., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Maaref, A., Barhoumi, H., Rammah, M., Martelet, C., Jaffrezic-Renault, N., Mousty, C., & Cosnier, S. (2007). Comparative study between organic and inorganic entrapment matrices for urease biosensor development. Sensors and Actuators B: Chemical, 123, 671–679. DOI:10.1016/j.snb.2006.10.010.

    Article  CAS  Google Scholar 

  • Pozniak, G., Krajewska, B., & Trochimczuk, W. (1995). Urease immobilized on modified polysulphone membrane: Preparation and properties. Biomaterials, 16, 129–134. DOI: 10.1016/0142-9612(95)98275-J.

    Article  CAS  Google Scholar 

  • Raghunath, K., Rao, P. K., & Jozeph, T. K. (1984). Preparation and characterization of urease immobilized on to collagenpoly (glycidyl methacrylate) graft copolymer. Biotechnology and Bioengineering, 26, 104–109. DOI: 10.1002/bit.260260119.

    Article  CAS  Google Scholar 

  • Rao, S. M., Chellapandian, M., & Krishnan, M. R. V. (1995). Immobilization of urease on gelatin — poly (HEMA) copolymer preparation and characterization. Bioprocess and Biosystems Engineering, 13, 211–214. DOI: 10.1007/BF00367256.

    CAS  Google Scholar 

  • Rosen-Margalit, I., & Rishpon, J. (1993). Novel approaches for the use of mediators in enzyme electrodes. Biosensors and Bioelectronics, 8, 315–323. DOI: 10.1016/0956-5663(93)85012-D.

    Article  CAS  Google Scholar 

  • Singh, S., Singhal, R., & Malhotra, B. D. (2007). Immobilization of cholesterol esterase and cholesterol oxidase onto solgel films for application to cholesterol biosensor. Analytica Chimica Acta, 582, 335–343. DOI: 10.1016/j.aca.2006.09.010.

    Article  CAS  Google Scholar 

  • Teke, A. B., & Baysal, Ş. H. (2007). Immobilization of urease using glycidyl methacrylate grafted nylon-6-membranes. Process Biochemistry, 42, 439–443. DOI: 10.1016/j.procbio.2006. 08.012.

    Article  CAS  Google Scholar 

  • Tsai, H.-c., & Doong, R.-a. (2007). Preparation and characterization of urease-encapsulated biosensors in poly(vinyl alcohol)-modified silica sol-gel materials. Biosensors and Bioelectronics, 23, 66–73. DOI: 10.1016/j.bios.2007.03.017.

    Article  CAS  Google Scholar 

  • Yamada, M., & Honma, I. (2004). Anhydrous protonic conductivity of a self-assembled acid-base composite. The Journal of Physical Chemistry B, 108, 5522–5526. DOI: 10.1021/jp030767o.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Şenel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şenel, M., Coşkun, A., Fatih Abasıyanık, M. et al. Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network. Chem. Pap. 64, 1–7 (2010). https://doi.org/10.2478/s11696-009-0103-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0103-x

Keywords

Navigation