Chemical Papers

, 63:716 | Cite as

Spectrophotometric methods for sertraline hydrochloride and/or clidinium bromide determination in bulk and pharmaceutical preparations

  • Alaa S. Amin
  • Hassan A. Dessouki
  • Moustafa M. Moustafa
  • Mohammed S. Ghoname
Original Paper

Abstract

A spectrophotometric procedure for the determination of sertraline hydrochloride (Sert) and/or clidinium bromide (Clid) in bulk sample and in dosage forms was developed. The purpose of this work was to develop a rapid, simple, inexpensive, precise, and accurate visible spectrophotometric method. The procedure is based on formation of an ion-pair complex by their reaction with bromocresol green (BCG), bromophenol blue (BPB), and bromothymol blue (BTB) in buffered aqueous solution at pH 3. The colored products are extracted into a polar solvent and measured spectrophotometrically at the optimum λmax for each complex. Optimization of different experimental conditions is described. Regression analysis of Beer-Lambert plots showed good correlation in the concentration range of 1–30 µg mL−1. The apparent molar absorptivity, Sandell sensitivity, detection and quantification limits were calculated. For more accurate analysis, Ringbom optimum concentration range of 2–27 µg mL−1 was used. The developed methods were successfully applied for the determination of sertraline hydrochloride and clidinium bromide in bulk in pharmaceutical formulations without any interference from common excipients. The procedure has the advantage of being highly sensitive and simple for the determination of the studied drugs, weak UV-absorbing compounds.

Keywords

spectrophotometry ion pair sertraline hydrochloride clidinium bromide determination pharmaceutical formulations urine samples 

References

  1. Bebawy, L. I., El-Kousy, N., Suddik, J. K., & Shokry, M. (1999). Spectrophotometric determination of fluoxetine and sertraline using chloranil, 2,3-dichloro-5,6-dicyano benzoquinone and iodine. Journal of Pharmaceutical and Biomedical Analysis, 21, 133–142. DOI: 10.1016/S0731-7085(99)00101-6.CrossRefGoogle Scholar
  2. Britton, H. T. S. (1952). Hydrogen ions (4th ed.) (pp. 1168). London: Chapman and Hall.Google Scholar
  3. Chen, D., Chen, Y., & Hu, Y. (2004b). Optimized separation of cis-trans isomers and enantiomers of sertraline using cyclodextrin-modified micellar electrokinetic chromatography. Chromatographia, 60, 469–473. DOI: 10.1365/s10337-004-0375-9.CrossRefGoogle Scholar
  4. Chen, D., Jiang, S., Chen, Y., & Hu, Y. (2004a). HPLC determination of sertraline in bulk drug, tablets and capsules using hydroxypropyl-β-cyclodextrin as mobile phase additive. Journal of Pharmaceutical and Biomedical Analysis, 34, 239–245. DOI: 10.1016/j.japna.2003.08.013.CrossRefGoogle Scholar
  5. Darwish, I. A. (2005). Development and validation of spectrophotometric methods for determination of fluoxetine, sertraline, and paroxetine in pharmaceutical dosage forms. Journal of AOAC International, 88, 38–45.Google Scholar
  6. Dhake, S., Gangwal, N. A., & Talekar, R. S. (2000). Simultaneous spectrophotometric estimation of clidinium bromide and chlordiazepoxide in its tables. Indian Drugs, 37, 243–245.Google Scholar
  7. Dinç, E., Dermiş, D., & Băleanu, D. (2006). Simultaneous spectrophotometric determination of chlordiazepoxide and clidinium bromide in sugar coated tablets by partial least squares. Revista de Chimie (Bucharest), 57, 229–233Google Scholar
  8. Erk, N. (2003). Rapid and simple methods for quantitative analysis of some antidepressant in pharmaceutical formulations by using first derivative spectrophotometry and HPLC. Il Farmaco, 58, 1209–1216. DOI: 10.1016/j.farmac.2003.07.008.CrossRefGoogle Scholar
  9. Gao, J. F., & Li, S.-Y. (2007). Determination of sertraline hydrochloride in human plasma by LC-MS/MS. Chinese Pharmaceutical Journal, 42, 1023–1025.Google Scholar
  10. He, L., Feng, F., & Wu, J. (2005). Determination of sertraline in human plasma by high-performance liquid chromatography-electrospray ionization mass spectrometry and method validation. Journal of Chromatographic Science, 43, 532–535.Google Scholar
  11. Higashi, Y., Matsumura, H., & Fuji, Y. (2005). Determination of fluvoxamine in rat plasma by HPLC with pre-column derivatization and fluorescence detection using 4-fluoro-7-nitro-2,1,3-benzoxadiazole. Biomedical Chromatography, 19, 771–776. DOI: 10.1002/bmc.514.CrossRefGoogle Scholar
  12. Honigberg, I. L., Stewart, J. T., Smith, A. P., Plunkett, R. D., & Justice, E. L. (1975). Liquid chromatography in pharmaceutical analysis IV: Determination of antispasmodic mixtures. Journal of Pharmaceutical Sciences, 64, 1389–1393. DOI: 10.1002/jps.2600640829.CrossRefGoogle Scholar
  13. Inczédy, J., Lengyel, T., & Ure, A. M. (1998). IUPAC compendium of analytical nomenclature: Definitive rules 1997 (3rd ed.). Oxford: Blackwell Scientific Publications.Google Scholar
  14. Jain, D. S., Sanyal, M., Subbaiah, G., Pande, U. C., & Shrivastav, P. (2005). Rapid and sensitive method for the de termination of sertraline in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Journal of Chromatography B, 829, 69–74. DOI: 10.1016/j.jchromb.2005.09.035.CrossRefGoogle Scholar
  15. Kim, K.M., Jung, B. H., Choi, M. H., Woo, J. S., Paeng, K. J., & Chung, B. C. (2002). Rapid and sensitive determination of sertraline in human plasma using gas chromatography-mass spectrometry. Journal of Chromatography B, 769, 333–339. DOI: 10.1016/S1570-0232(02)00027-2.CrossRefGoogle Scholar
  16. Meyyanathan, S. N., Mani Puratchi, V., Sarma Rama, G. V. S., Raman, V., & Suresh, B. (2001). Spectrophotometric estimatiom of sertraline hydrochloride in pharmaceutical formulations. Indian Drugs, 38, 236–239.Google Scholar
  17. Miller, J. C., & Miller, J. N. (2000). Statistics and chemometrics for analytical chemistry (4th ed.). Harrow, U.K.: Pearson Education/Prentice Hall.Google Scholar
  18. Nickerson, B. (1997). The determination of a degradation product in clidinium bromide drug substance by capillary electrophoresis with indirect UV detection. Journal of Pharmaceutical & Biomedical Analysis, 15, 965–971. DOI: 10.1016/S0731-7085(96)01922-X.CrossRefGoogle Scholar
  19. October Pharma Company (2005). Method for determination of sertraline hydrochloride. 6th of October City, Egypt: October Pharma Company.Google Scholar
  20. Oles, P. J. (1978). High-pressure liquid chromatographic separation and determination of anomeric forms of streptozocin in a powder formulation. Journal of Pharmacutical Sciences, 67, 1300–1302. DOI: 10.1002/jps. 2600670929.CrossRefGoogle Scholar
  21. Özkan, S. A., Erk, N., & Sentürk, Z. (1999). Simultaneous determination of two-component mixtures in pharmaceutical formulations containing chlordiazepoxide by ratio spectra derivative spectrophotometry. Analytical Letters, 32, 497–520 DOI: 10.1080/00032719908542836.CrossRefGoogle Scholar
  22. Silva, B. J. G., Queiroz, R. H. C., & Queiroz, M. E. C. (2007). Simultaneous determination of nontricyclic antidepressants in human plasma by solid-phase microextraction and liquid chromatography (SPME-LC). Journal of Analytical Toxicology, 31, 313–320.Google Scholar
  23. Toral, M. I., Richter, P., Lara, N., Jaque, P., Soto, C., & Saavedra, M. (1999). Simultaneous determination of chlordiazepoxide and clidinium bromide in pharmaceutical formulations by derivative spectrophotometry. International Journal of Pharmaceutics, 189, 67–74. DOI: 10.1016/S0378-5173(99)00238-0.CrossRefGoogle Scholar
  24. United States Pharmacopoeial Convention (2002). United States pharmacopoeia-National formulary (USP25 NF20) (pp. 436–437). Rockville, MD, USA: United States Pharmacopoeial Convention.Google Scholar
  25. Venkateswarlu, K., Venisetty, R. K., Yellu, N. R., Keshetty, S., & Pai, M. G. (2007). Development of HPTLC-UV absorption densitometry method for the analysis of alprazolam and sertraline in combination and its application in the evaluation of marketed preparations. Journal of Chromatographic Science, 45, 537–539.Google Scholar
  26. Wang, J. S., Zhu, H. J., Gibson, B. B., Markowitz, J. S., Donovan, J. L., & DeVane, C. L. (2008). Sertraline and its metabolite desmethylsertraline, but not bupropion or its three major metabolites, have high affinity for P-glycoprotein. Biological and Pharmaceutical Bulletin, 31, 231–234. DOI: 10.1248/bpb.31.231.CrossRefGoogle Scholar
  27. Yoe, J. H., & Jones, A. L. (1944). Colorimetric determination of iron with disodium 1,2-dihydroxybenzene-3,5-disulfonate. Industrial and Engineering Chemistry, Analytical Edition, 16, 111–115. DOI: 10.1021/i560126a015.CrossRefGoogle Scholar
  28. Yuen, S. M., & Lehr, G. (1991). Liquid chromatographic determination of clidinium bromide and clidinium bromide-chlordiazepoxide hydrochloride combinations in capsules. Journal of the Association of Official Analytical Chemists, 74, 461–464.Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2009

Authors and Affiliations

  • Alaa S. Amin
    • 1
  • Hassan A. Dessouki
    • 1
  • Moustafa M. Moustafa
    • 1
  • Mohammed S. Ghoname
    • 1
  1. 1.Chemistry Department, Faculty of ScienceBenha UniversityBenhaEgypt

Personalised recommendations