Skip to main content
Log in

Synthesis of new quinoxalinophenazinediones and tetrahydrobenzodipyrrolotetrones of biological interest

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The reaction of two equivalents of sodium azide with diarylaminodibromo-p-benzoquinone (I) in DMF for 15–24 h produced quinoxalinophenazinediones together with a byproduct identified as diarylaminodiaminobenzoquinone. On the other hand, the reaction of bromanil with active methylenes, such as diethyl malonate and ethyl acetoacetate, resulted in disubstitution products which, on treatment with primary amines, cyclized into benzodipyrroletetrones. Comparative antifungal and antibacterial studies were made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boggust, W. A., Cocker, W., Schwarz, J. C. P., & Stuart, E. R. (1950). Some naphthothiazoles. Journal of the Chemical Society, 1950, 680–682. DOI: 10.1039/JR9500000680.

    Google Scholar 

  • Boyle, V. J., Fancher, M. E., & Ross, R. W., Jr. (1973). Rapid, modified Kirby-Bauer susceptibility test with single, high-concentration antimicrobial disks. Antimicrobial Agents and Chemotherapy, 3, 418–424.

    CAS  Google Scholar 

  • Dudley, K. H., & Miller, H. W. (1970). Potential naphthoquinone antimalarials. 2-Acylhydrazino-1,4-naphthoquinonones. Journal of Medicinal Chemistry, 13, 535–537. DOI: 10.1021/jm00297a044.

    Article  CAS  Google Scholar 

  • Foltinova, P., Sutoris, V., Blockinger, G., & Ebringer, L. (1978). Antimicrobial effects of some benzothiazol derivatives. Folia Microbiologica, 23, 225–228.

    Article  CAS  Google Scholar 

  • Hammam, A. S., Youssef, M. S. K., Atta, F. M., & Mohamed, T. A. (2007). Synthesis of new triphenodithiazine-and indolocarbazolediones of biological interest. Chemical Papers, 61, 292–299. DOI: 10.2478/s11696-007-0036-1.

    Article  CAS  Google Scholar 

  • Hammam, A. S., Youssef, M. S. K., Radwan, S. M., & Abdel Rahman, M. A. (2004). Synthesis of a new Diels-Alder quinone adduct and its use in preparing thiazolo-and oxazoloquinolines. Bulletin of the Korean Chemical Society, 25, 779–785.

    Article  CAS  Google Scholar 

  • Kersten, W. (1971). Inhibition of RNA synthesis by quinone antibiotics. Progress in Molecular and Subcellular Biology, 2, 48–57.

    CAS  Google Scholar 

  • Kitasato, Z., & Sone, C. (1930). Synthese des N-methyloxynaphtindolchinons und N-methylnaphthoisatinchinons. Bulletin of the Chemical Society of Japan, 5, 348–354.

    Article  CAS  Google Scholar 

  • Kwon-Chung, K. J., & Bennett, J. E. (1992). Medical mycology. London: Lea & Febiger.

    Google Scholar 

  • Liebermann, C. (1899). Ueber Farbreaktionen von Indonen und Chinonen mit Malonsäurederivaten. Berichte der deutschen chemischen Gesellschaft, 32, 260–267. DOI: 10.1002/cber.18990320141.

    Article  CAS  Google Scholar 

  • Liebermann, C. (1900). Ueber die malonesterartigen Derivate des Dibrom-α-naphtochinons. (IV. Mitteilung). Berichte der deutschen chemischen Gesellschaft, 33, 566–578. DOI: 10.1002/cber.19000330193.

    Article  Google Scholar 

  • Ling, A. J., Padini, R. S., Cosby, L. A., Lillis, B. J., Shansky, C. W., & Sartorelli, A. C. (1973). Potential bioreductive alky-lating agents. 2. Antitumor effect and biochemical studies of naphthoquinone derivatives. Journal of Medicinal Chemistry, 16, 1268–1271. DOI: 10.1021/jm00269a010.

    Article  Google Scholar 

  • Martin, Y. C., Bustard, T. M., & Lynn, K. R. (1973). Relation between physical properties and antimalarial activities of 1,4-naphthoquinones. Journal of Medicinal Chemistry, 16, 1089–1093. DOI: 10.1021/jm00268a005.

    Article  CAS  Google Scholar 

  • Meganathan, R. (2001). Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): A perspective on enzymatic mechanisms. Vitamins and Hormones — Advances in Research and Applications, 61, 173–218.

    CAS  Google Scholar 

  • Morton, R. A. (Ed.) (1965). Biochemistry of quinones. New York: Academic Press.

    Google Scholar 

  • Nohl, H., Jordan, W., & Youngman, R. J. (1986). Quinones in biology: Functions in electron transfer and oxygen activation. Advances in Free Radical Biology & Medicine, 2, 211–279. DOI: 10.1016/S8755-9668(86)80030-8.

    Article  CAS  Google Scholar 

  • Olenick, C. G., & Hahn, F. E. (1974). Bactericidal action of a 2-hydroxy-3-alkyl-1,4-naphthoquinone. Annals of the New York Academy of Sciences, 235, 542–552.

    Article  CAS  Google Scholar 

  • Pardee, A. B, Li, Y. Z., & Li, C. J. (2002). Cancer therapy with β-lapachone. Current Cancer Drug Targets, 2, 227–242.

    Article  CAS  Google Scholar 

  • Rich, S. (1969) In T. G. Torgeson (Ed.), Fungicides. An advanced treatise. New York: Academic Press.

    Google Scholar 

  • Van Allan, J. A., Reynolds, G. A., & Adel, R. E. (1963). Polynuclear heterocycles. III. The chlorination and nitration of benzo[b]phenazine. Journal of Organic Chemistry, 28, 520–524. DOI: 10.1021/jo01037a065.

    Article  Google Scholar 

  • Van Cutsem, J., Kurata, H., Matsuoka, H., Mikami, Y., Pfaller, M. A., Scalarone, G. M., & Rinaldi, M. G. (1994). Antifungal drug susceptibility testing. Journal of Medical and Veterinary Mycology, 32, 267–276.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. K. Youssef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammam, A.S., Youssef, M.S.K., Atta, F.M. et al. Synthesis of new quinoxalinophenazinediones and tetrahydrobenzodipyrrolotetrones of biological interest. Chem. Pap. 62, 194–206 (2008). https://doi.org/10.2478/s11696-008-0011-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0011-5

Keywords

Navigation