Skip to main content
Log in

Gas chromatography with ballistic heating and ultrafast cooling of column

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

An overview of the existing methods for minimization of the analysis time in gas chromatography (GC) is presented and a new system for fast temperature programming and very fast cooling down is evaluated. In this study, a system of coaxial tubes, a heating/cooling module (HC-M), was developed and studied with a capillary column placed inside the HC-M. The module itself was heated by a GC oven and cooled down by an external cooling medium. The HC-M was heated at rates of up to 330 °C min−1 and cooled at the rate of 6000 °C min−1. The GC system was prepared for the next run within a few seconds. The HC-M permits good separation reproducibility, comparable with that of a conventional GC, expressed in terms of relative retention times and peak areas of analytes reproducibilities. The HC-M can be used within any commercial gas chromatograph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berezkin, V. G., Chernysheva, T. Yu., Buzayev, V. V., & Ko-shevnik, M. A. (1986). Temperature gradients in gas chromatography. Journal of Chromatography A, 373, 21–44. DOI: 10.1016/S0021-9673(00)80206-X.

    Article  CAS  Google Scholar 

  • Bicchi, C., Brunelli, C., Cordero, C., Rubiolo, P., Galli, M., & Sironi, A. (2004). Direct resistively heated column gas chromatography (Ultrafast module-GC) for high-speed analysis of essential oils of differing complexities. Journal of Chromatography A, 1024, 195–207. DOI: 10.1016/j.chroma.2003. 10.018.

    Article  CAS  Google Scholar 

  • Blumberg, L. M., & Klee, M. S. (2000a). Optimal heating rate in gas chromatography. Journal of Microcolumn Separations, 12, 508–514. DOI: 10.1002/1520-667X(2000)12:9〈508::AID-MCS5〉3.0.CO;2-Y.

    Article  CAS  Google Scholar 

  • Blumberg, L. M., & Klee, M. S. (2000b). Characteristic thermal constant and dimensionless heating rate. The links to optimum heating rate in GC. Analytical Chemistry, 72, 4080–4089. DOI: 10.1021/ac000378f.

    Article  CAS  Google Scholar 

  • Blumberg, L. M., & Klee, M. S. (1998). In P. Sandra (Ed.), Proceedings of 20th International Symposium of Capillary Chromataography May 26-29 1998, (PL9). Riva del Garda, Italy.

  • Cramers, C. A., Janssen, H. G., van Deursen, M. M., Leclercq, P. A. (1999). High-speed gas chromatography: an overview of various concepts. Journal of Chromatography A, 856, 315–329. DOI: 10.1016/S0021-9673(99)00227-7.

    Article  CAS  Google Scholar 

  • Dagan, S., & Amirav, A. (1996). Fast, very fast, and ultra-fast gas chromatography-mass spectrometry of thermally labile steroids, carbamates, and drugs in supersonic molecular beams. Journal of the American Society for Mass Spectrometry, 7, 737–752. DOI: 10.1016/1044-0305(96)80519-8.

    CAS  Google Scholar 

  • Dallüge, J., Vreuls, R. J. J., van Iperen, D. J., van Rijn, M., & Brinkman, U. A. T. (2002). Resistively heated gas chromatography coupled to quadrupole mass spectrometry. Journal of Separation Science, 25, 608–614. DOI: 10.1002/1615-9314(20020601)25:9〈608::AID-JSSC608〉3.0.CO;2-R.

    Article  Google Scholar 

  • Dallüge, J., Ou-Aissa, R., Vreuls, J. J., Brinkman, U. A. T., & Veraart, J. V. (1999). Fast temperature programming in gas chromatography using resistive heating. Journal of High Resolution Chromatography, 22, 459–464. DOI: 10.1002/(SICI)1521-4168(19990801)22:8〈459::AID-JHRC459〉3.0.CO;2-G.

    Article  Google Scholar 

  • Gaisford, S. (2002). A microwave oven for gas chromatography. American Laboratory, 34(7), 10.

    Google Scholar 

  • Giddings, J. C. (1962). Theory of minimum time operation in gas chromatography. Analytical Chemistry, 34, 314–319. DOI: 10.1021/ac60183a005.

    Article  CAS  Google Scholar 

  • Grall, A., Leonard, C., & Sacks, R. (2000). Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates. Analytic Chemistry, 72, 591–598. DOI: 10.1021/ac9911802.

    Article  CAS  Google Scholar 

  • Harris, W. E., & Habgood, H. W. (1966). Programmed Temperature Gas Chromatography. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Korytár, P., Janssen, H. G., Matisová, E., & Brinkman, U. A. T. (2002). Practical fast gas chromatography: methods, instrumentation and applications. Trends in Analytical Chemistry, 21, 558–572. DOI: S0165-9936(02)00811-7.

    Article  Google Scholar 

  • Magni, P., Facchetti, R., Cavagnino, D., & Trestianu, S. (2002). In Proceedings of 25th International Symposium of Capillary Chromataography, May 13-17 2002, (KLN05, and references cited therein) Riva del Garda, Italy.

  • Maštovská, K., Hajšlová, J., Godula, M., Křivánková, J., & Ko-courek, V. (2001). Fast temperature programming in routine analysis of multiple pesticide residues in food matrices. Journal of Chromatography A, 907, 235–245. DOI: S0021-9673(00)01045-1.

    Article  Google Scholar 

  • Matisová, E., & Dömötörová, M. (2003). Fast gas chromatography and its use in trace analysis. Journal of Chromatography A, 1000, 199–221. DOI: 10.1016/S0021-9673(03)00310-8.

    Article  Google Scholar 

  • Matz, G., Harder, A., Walte, A., & Münchmeyer, W. (1997). Short column GC/MS with increased analysis speed by peak-hopping. Retrieved November 2003, from www.tuharburg.de.

  • McNair, H. M., & Reed, G. L. (2000). Fast gas chromatography: The effect of fast temperature programming. Journal of Microcolumn Separations, 12, 351–355. DOI: 10.1002/1520-667X(2000)12:6〈351::AID-MCS3〉3.0.CO;2-Y.

    Article  CAS  Google Scholar 

  • Mustacich, R., Everson, J., & Richards, J. (2003). Fast GC: Thinking outside the box. American Laboratory, 35(3), 38–41.

    Google Scholar 

  • Sacks, G., & Brenna, T. (2003). Comparison of microwave and conventionally heated columns for gas chromatography of fatty acid methyl esters. American Laboratory, 35(7), 22–24.

    CAS  Google Scholar 

  • van Es, A., Janssen, J., Cramers, C. A., & Rijks, J. (1988). Sample enrichment in high speed narrow bore capillary gas chromatography. Journal of High Resolution Chromatography and Chromatography Communications, 11, 852–857. DOI: 10.1002/jhrc.1240111202.

    Article  Google Scholar 

  • van Deursen, M. M., Beens, J., Janssen, H. G., Leclercq, P. A., & Cramers, C. A. (2000). Evaluation of time-of-flight mass spectrometric detection for fast gas chromatography. Journal of Chromatography A, 878, 205–213. DOI: 10.1016/S0021-9673(00)00300-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Róbert Kubinec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krkošová, Ž., Kubinec, R., Jurdáková, H. et al. Gas chromatography with ballistic heating and ultrafast cooling of column. Chem. Pap. 62, 135–140 (2008). https://doi.org/10.2478/s11696-008-0002-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0002-6

Keywords

Navigation