Skip to main content
Log in

Liquid-liquid equilibria of butyric acid for solvents containing a phosphonium ionic liquid

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

L/L equilibrium data of butyric acid (BA) in aqueous solutions contacted with the solvents containing ionic liquid (IL), trihexyl-(tetradecyl)phosphonium bis 2,4,4-trimethylpentylphosphinate (Cyphos IL-104), and a related model are presented. IL-104 and its solutions in dodecane were found to be effective solvents of BA. The values of the distribution coefficients of BA were higher than those for solvents with the widely used extractant trioctylamine, especially at low acid concentrations and were also several-fold higher than those of lactic acid (LA). IL extracted BA only in its undissociated form (BAH) at pH well below pK a of the acid. The loading of IL was independent of IL concentration and it achieved a value higher than four at saturation. Complexes with 1–5 molecules of BA per one IL molecule were supposed in the mass action model in which the reactive formation of complexes (BAH) p (IL)(H2O)2 was supposed. Up to 10 % of the total extracted BA was extracted physically by dodecane as a monomer and dimer, in the solvent. The water content in the organic phase steeply decreased with the BA concentration, which was caused by splitting water-IL reverse micelles due to the formation of the BAH/IL complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bekou, E., Dionysiou, D. D., Qian, R. Y., & Botsaris, G. D. (2003). Extraction of chlorophenols from water using room temperature ionic liquids. In Rogers, R. D., & Seddon, K. R. (Eds.), Ionic liquids as green solvents: Progress and prospects (pp. 544–560). Washington, D.C.: ACS.

    Google Scholar 

  • Bilgin, M., Kirbaşlar, S. I., Özcan, O., & Dramur, U. (2006). Distribution of butyric acid between water and several solvents. Journal of Chemical and Engineering Data, 51, 1546–1550. DOI: 10.1021/je060025z.

    Article  CAS  Google Scholar 

  • Bradaric, C. J., Downard, A., Kennedy, C., Robertson, A. J., & Zhou, Y. H. (2003). Industrial preparation of phosphonium ionic liquids. Green Chemistry, 5, 143–152. DOI: 10.1039/b209734f.

    Article  CAS  Google Scholar 

  • Cardoso, M. M., Barradas, M. J., Kroner, K. H., & Crespo, J. G. (1999). Amino acid solubilization in cationic reversed micelles: factors affecting amino acid and water transfer. Journal of Chemical Technology and Biotechnology, 74, 801–811.

    Article  CAS  Google Scholar 

  • Cull, S. G., Holbrey, J. D., Vargas-Mora, V., Seddon, K. R., & Lye, G. J. (2000). Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnology and Bioengineering, 69, 227–233. DOI: 10.1002/(SICI)1097-0290(20000720)69:2〈227::AID-BIT12〉 3.0.CO;2-0.

    Article  CAS  Google Scholar 

  • Hano, T., Matsumoto, M., Ohtake, T., Sasaki, K., Hori, F., & Kawano, Y. (1990). Extraction equilibria of organic acids with tri-n-octylphosphineoxide. Journal of Chemical Engineering of Japan, 23, 734–738.

    Article  CAS  Google Scholar 

  • Hatzinikolaou, D. G., & Wang, H. Y. (1992). Extractive fermentation systems for organic acids production. Canadian Journal of Chemical Engineering, 70, 543–552.

    Article  CAS  Google Scholar 

  • Huddleston, J. G., Willauer, H. D., Swatloski, R. P., Visser, A. E., & Rogers, R. D. (1998). Room temperature ionic liquids as novel media for clean liquid-liquid extraction. Chemical Communications, 1998, 1765–1766. DOI: 10.1039/a803999b.

  • Kertész, R., & Schlosser, Š. (2005). Design and simulation of two phase hollow fiber contactors for simultaneous membrane based solvent extraction and stripping of organic acids and bases. Separation and Purification Technology, 41, 275–287. DOI: 10.1016/j.seppur.2004.09.007.

    Article  CAS  Google Scholar 

  • Kirbaşlar, S. I. (2006). (Liquid + liquid) equilibria of the (water + butyric acid + dodecanol) ternary system. Journal of Chemical Thermodynamics, 38, 696–700. DOI: 10.1016/j.jct. 2005.07.025.

    Article  CAS  Google Scholar 

  • Liu, J. F., Jiang, G. B., & Jönsson, J. Å. (2005). Application of ionic liquids in analytical chemistry. TrAC-Trends in Analytical Chemistry. 24, 20–27. DOI: 10.1016/j.trac.2004.09.005.

    Article  CAS  Google Scholar 

  • Marták, J., & Schlosser, Š. (2000). L/L equilibria of dimethylcyclopropanecarboxylic acid in water-solvent systems with trioctylamine as an extractant. Chemical Papers, 54, 413–422.

    Google Scholar 

  • Marták, J., & Schlosser, Š. (2004a). Ionic Liquids in Pertraction and Extraction of Organic Acids. In 19th ‘Ars Separatoria’, 10–13 June 2004 Złoty Potok, Poland: University of Technology and Agriculture in Bydgoszcz. (http://www.ars_separatoria.chem.uni.torun.pl)

    Google Scholar 

  • Marták, J., & Schlosser, Š. (2004b). Screening of ionic liquids for application in solvent extraction and pertraction. In Proc. 31th Conf. SSCHI, CD ROM with full papers, 24–28 May 2004 (p. 12). Tatranské Matliare, Slovakia: SSCHI.

    Google Scholar 

  • Marták, J., & Schlosser, Š. (2006a). Pertraction of organic acids through liquid membranes containing ionic liquids. Desalination, 199, 518–520. DOI: 10.1016/j.desal.2006.03.117.

    Article  CAS  Google Scholar 

  • Marták, J., & Schlosser, Š. (2006b). Phosphonium ionic liquids as new, reactive extractants of lactic acid. Chemical Papers, 60, 395–398. DOI: 10.2478/s11696-006-0072-2.

    Article  CAS  Google Scholar 

  • Marták, J., & Schlosser, Š. (2007a). Extraction of lactic acid by phosphonium ionic liquids. Separation and Purification Technology, 57, 483–494. DOI: 10.1016/j.seppur.2006.09.013.

    Article  CAS  Google Scholar 

  • Marták, J., Schlosser, Š., & Vlčková, S. (2007b). Pertraction of lactic acid through supported liquid membranes containing phosphonium ionic liquid. Journal of Membrane Science. submited for publication.

  • Matsumoto, M., Mochiduki, K., Fukunishi, K., & Kondo, K. (2004). Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus. Separation and Purification Technology, 40, 97–101. DOI: 10.1016/j.seppur.2004.01.009.

    Article  CAS  Google Scholar 

  • McFarlane, J., Ridenour, W. B., Luo, H., Hunt, R. D., DePaoli, D. W., & Ren, R. X. (2005). Room temperature ionic liquids for separating organics from produced water. Separation Science and Technology, 40, 1245–1265. DOI: 10.1081/SS-200052807.

    Article  CAS  Google Scholar 

  • Nakashima, K., Kubota, F., Maruyama, T., & Goto, M. (2005). Feasibility of ionic liquids as alternative separation media for industrial solvent extraction processes. Industrial & Engineering Chemistry Research, 44, 4368–4372. DOI: 10.1021/ie049050t.

    Article  CAS  Google Scholar 

  • Pandey, S. (2006). Analytical applications of room-temperature ionic liquids: A review of recent efforts. Analytica Chimica Acta, 556, 38–45. DOI: 10.1016/j.aca.2005.06.038.

    Article  CAS  Google Scholar 

  • Playne, M. J. (1985). Propionic and butyric Acids. In Blanch, H. W., Drew, S., & Wang, D. I. C. (Eds.), Comprehensive Biotechnology (pp. 731–795). New York: Pergamon Press.

    Google Scholar 

  • Sabolová, E., Schlosser, Š., & Marták, J. (2001). Liquid-liquid equilibria of butyric acid in water + solvent systems with trioctylamine as extractant. Journal of Chemical Engineering Data. 46, 735–745. DOI: 10.1021/je000323a.

    Article  CAS  Google Scholar 

  • Seddon, K. R., Stark, A., & Torres, M. J. (2000). Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry, 72, 2275–2287.

    Article  CAS  Google Scholar 

  • Smirnova, S. V., Torocheshnikova, I. I., Formanovsky, A. A., & Pletnev, I.,V. (2004). Solvent extraction of amino acids into a room temperature ionic liquid with dicyclohexano-18-crown-6. Analytical and Bioanalytical Chemistry, 378, 1369–1375. DOI: 10.1007/s00216-003-2398-8.

    Article  CAS  Google Scholar 

  • Vandák, D., Zigová, J., Šturdík, E., & Schlosser, Š. (1997). Evaluation of solvent and pH for extractive fermentation of butyric acid. Process Biochemistry, 32, 245–251. DOI: 10.1016/S0032-9592(96)00084-2.

    Article  Google Scholar 

  • Visser, A. E., Holbrey, J. D., & Rogers, R. D. (2001). Hydrophobic ionic liquids incorporating N-alkylisoquinolinium cations and their utilization in liquid-liquid separations. Chemical Communications, 2001, 2484–2485. DOI: 10.1039/b109340c.

  • Visser, A. E., Swatloski, R. P., Reichert, W. M., Griffin, S. T., & Rogers, R. D. (2000). Traditional extractants in nontraditional solvents: Groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids. Industrial & Engineering Chemistry Research. 39, 3596–3604. DOI: 10.1021/ie000426m.

    Article  CAS  Google Scholar 

  • Wang, J. J., Pei, Y. C., Zhao, Y., & Hu, Z. G. (2005). Recovery of amino acids by imidazolium based ionic liquids from aqueous media. Green Chemistry, 7, 196–202. DOI: 10.1039/b415842c.

    Article  CAS  Google Scholar 

  • Wasserscheid, P., & Welton, T. (Eds). (2003). Ionic liquids in synthesis. Weinheim: Wiley-VCH

    Google Scholar 

  • Wu, Z. T., & Yang, S. T. (2003). Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum. Biotechnology and Bioengineering, 82, 93–102. DOI: 10.1002/bit.10542.

    Article  CAS  Google Scholar 

  • Yang, S. T., White, S. A., & Hsu, S. T. (1991). Extraction of carboxylic acids with tertiary and quaternary amines: effect of pH. Industrial & Engineering Chemistry Research, 30(6), 1335–1342. DOI: 10.1021/ie00054a041.

    Article  CAS  Google Scholar 

  • Zhao, H., Xia, S. Q., & Ma, P. S. (2005). Use of ionic liquids as ‘green’ solvents for extractions. Journal of Chemical Technology and Biotechnology, 80, 1089–1096. DOI: 10.1002/jctb.1333.

    Article  CAS  Google Scholar 

  • Zigová, J., Šturdík, E., Vandák, D., & Schlosser, Š. (1999). Butyric acid production by Clostridium butyricum with integrated extraction and pertraction. Process Biochemistry, 34, 835–843. DOI: 10.1016/S0032-9592(99)00007-2.

    Article  Google Scholar 

  • Zigová, J., Švitel, J., & Šturdík, E. (2000). Possibilities of butyric acid production by butanol oxidation with Gluconobacter oxydans coupled with extraction. Chemical and Biochemical Engineering Quarterly, 14, 95–100.

    Google Scholar 

  • Zigová, J., Vandák, D., Schlosser, Š., & Šturdík, E. (1996). Extraction equilibria of butyric acid with organic solvents. Separation Science and Technology, 31, 2671–2684. DOI: 10.1080/01496399608000819.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Štefan Schlosser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marták, J., Schlosser, Š. Liquid-liquid equilibria of butyric acid for solvents containing a phosphonium ionic liquid. Chem. Pap. 62, 42–50 (2008). https://doi.org/10.2478/s11696-007-0077-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-007-0077-5

Keywords

Navigation