Advertisement

Chemical Papers

, Volume 61, Issue 3, pp 151–170 | Cite as

A review of methods for synthesis of nanostructured metals with emphasis on iron compounds

  • A. Tavakoli
  • M. SohrabiEmail author
  • A. Kargari
Review

Abstract

Synthesis of metal nanoparticles with specific properties is a newly established research area attracting a great deal of attention. Several methods have been put forward for synthesis of these materials, namely chemical vapor condensation, arc discharge, hydrogen plasma—metal reaction, and laser pyrolysis in the vapor phase, microemulsion, hydrothermal, sol-gel, sonochemical, and microbial processes taking place in the liquid phase, and ball milling carried out in the solid phase.

The properties of metal nanoparticles depend largely on their synthesis procedures. In this paper the fundamentals, advantages, and disadvantages of each synthesis method are discussed.

Keywords

synthesis metal nanoparticles iron compounds biomaterials magnetite microemulsions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glenn, J. C., Technol. Forecast. Soc. 73, 128 (2006).ADSGoogle Scholar
  2. 2.
    Burda, C., Chen, X., Narayanan, R., and El-Sayed, M. A., Chem. Rev. 105, 1025 (2005).PubMedGoogle Scholar
  3. 3.
    Huang, W. C. and Lue, J. T., J. Phys. Chem. Solids 58, 1529 (1997).Google Scholar
  4. 4.
    Huang, W. C. and Lue, J. T., Phys. Rev. B: Condens. Matter 59, 69 (1999).ADSGoogle Scholar
  5. 5.
    Lue, J. T., Huang, W. C., and Ma, S. K., Phys. Rev. B: Condens. Matter 51, 14570 (1995).Google Scholar
  6. 6.
    Capek, I., Adv. Colloid Interface Sci. 110, 49 (2004).PubMedGoogle Scholar
  7. 7.
    Liu, T., Leng, Y. H., and Li, X. G., Solid State Commun. 125, 391 (2003).Google Scholar
  8. 8.
    Liu, T., Shao, H. Y., and Li, X. G., J. Phys.: Condens. Matter 15, 2507 (2003).ADSGoogle Scholar
  9. 9.
    Lane, R., Craig, B., and Babcock, W., AMPTIAC 6, 31 (2002).Google Scholar
  10. 10.
    Nanoscale Materials in Chemistry (Klabunde, K. J., Editor). Chapter 4. Wiley, New York, 2001.Google Scholar
  11. 11.
    Nanoscale Materials (Liz-Marzan, L. M. and Kamat, P. V., Editors), p. 81. Kluwer Academic Publishers, Boston, 2003.Google Scholar
  12. 12.
    Olah, G. A. and Laureate, N., in Handbook of Nanostructured Materials and Nanotechnology (Nalwa, H. S. Editor). Vol. 1, p. 3. Academic Press, San Diego, 2000.Google Scholar
  13. 13.
    Gonsalves, K. E., Li, H., Perez, R., Santiago, P., and Jose-Yacaman, M., Coord. Chem. Rev. 206, 607 (2000).Google Scholar
  14. 14.
    Suslick, K. S. and Price, G. J., Annu. Rev. Mater. Sci. 29, 295 (1999).Google Scholar
  15. 15.
    Tjong, S. C. and Chen, H., Mater. Sci. Eng., R 45, 1 (2004).Google Scholar
  16. 16.
    Huber, D. L., Small 1, 482 (2005).PubMedGoogle Scholar
  17. 17.
    Daniel, M. C. and Astruc, D., Chem. Rev. 104, 293 (2004).PubMedGoogle Scholar
  18. 18.
    Nano-Powders: Organization of the Disordered/Nanocluster Nucleation, Chapter 1, http://www.eng.uc.edu/:_gbeaucag/Classes/Nanopowders/Chapter_1_html/Chapter_1.html
  19. 19.
    Marvast, M. A., Sohrabi, M., Zarrinpashne, S., and Baghmisheh, G., Chem. Eng. Technol. 28, 78 (2005).Google Scholar
  20. 20.
    Marvast, M. A., Sohrabi, M., Zarrinpashne, S., and Baghmisheh, G., Gasoline Production from Syngas: Fixed Bed FT Reactor Study, CHEMCA 2004, Sydney, 2004.Google Scholar
  21. 21.
    Mahajan, D., Gutlich, P., Ensling, J., Pandya, K., Stumm, U., and Vijayaraghavan, P., Energy Fuels 17, 1210 (2003).Google Scholar
  22. 22.
    Mahajan, D., Gutlich, P., and Stumm, U., Catal. Commun. 4, 101 (2003).Google Scholar
  23. 23.
    Lopez-Perez, J. A., Lopez-Quintela, M. A., Mira, J., Rivas, J., and Charles, S. W., J. Phys. Chem. B 101, 8045 (1997).Google Scholar
  24. 24.
    Tavakoli, A., Sohrabi, M., and Kargari, A., Preparation of Iron Nanoparticles and Study on their Catalytic Properties in Fischer—Tropsch Process, Report No. 61/160. Amirkabir University of Technology, Tehran, 2005.Google Scholar
  25. 25.
    Champion, Y., Guerin-Mailly, S., Bonnentien, J. L., and Langlois, P., Scr. Mater. 44, 1609 (2001).Google Scholar
  26. 26.
    Sanders, P. G., Eastman, J. A., and Weertman, J. R., Acta Mater. 45, 4019 (1997).Google Scholar
  27. 27.
    Chang, W., Skandan, G., Danforth, S. C., Kear, B. H., and Hahn, H., Nanostruct. Mater. 4, 507 (1994).Google Scholar
  28. 28.
    Li, D., Choi, C. J., Yu, J. H., Kim, B. K., and Zhang, Z. D., J. Magn. Magn. Mater. 283, 8 (2004).ADSGoogle Scholar
  29. 29.
    Wang, Z. H., Choi, C. J., Kim, B. K., Kim, J. C., and Zhang, Z. D., J. Alloys Compd. 351, 319 (2003).Google Scholar
  30. 30.
    Chang, W., Skandan, G., Hahn, H., Danforth, S. C., and Kear, B. H., Nanostruct. Mater. 4, 345 (1994).Google Scholar
  31. 31.
    Choi, C. J., Tolochko, O., and Kim, B. K., Mater. Lett. 56, 289 (2002).Google Scholar
  32. 32.
    Choi, C. J., Dong, X. L., and Kim, B. K., Scr. Mater. 44, 2225 (2001).Google Scholar
  33. 33.
    Wang, Z. H., Choi, C. J., Kim, B. K., Kim, J. C., and Zhang, Z. D., Carbon 41, 1751 (2003).Google Scholar
  34. 34.
    Li, D., Choi, C. J., Kim, B. K., and Zhang, Z. D., J. Magn. Magn. Mater. 277, 64 (2004).ADSGoogle Scholar
  35. 35.
    Wang, Z. H., Choi, C. J., Kim, J. C., Kim, B. K., and Zhang, Z. D., Mater. Lett. 57, 3560 (2003).Google Scholar
  36. 36.
    Choi, C. J., Kim, B. K., Tolochko, O., and Da, L., Rev. Adv. Mater. Sci. 5, 487 (2003).Google Scholar
  37. 37.
    Dong, X. L., Choi, C. J., and Kim, B. K., Scr. Mater. 47, 857 (2002).Google Scholar
  38. 38.
    Kim, T. S., Sun, W., Choi, C. J., and Lee, B. T., Rev. Adv. Mater. Sci. 5, 481 (2003).Google Scholar
  39. 39.
    Fung, K. K., Qin, B., and Zhang, X. X., Mater. Sci. Eng., A 286, 135 (2000).Google Scholar
  40. 40.
    Lee, D. W., Yu, J. H., Jang, T. S., and Kim, B. K., Mater. Lett. 59, 2124 (2005).CrossRefGoogle Scholar
  41. 41.
    Oh, S. J., Choi, C. J., Kwon, S. J., Jin, S. H., Kim, B. K., and Park, J. S., J. Magn. Magn. Mater. 280, 147 (2004).ADSGoogle Scholar
  42. 42.
    Wang, Z. H., Zhang, Z. D., Choi, C. J., and Kim, B. K., J. Alloys Compd. 361, 289 (2003).Google Scholar
  43. 43.
    Dravid, V. P., Host, J. J., Teng, M. H., Elliott, B., Hwang, J. H., Johnson, D. L., Mason, T. O., and Weertman, J. R., Nature 374, 602 (1995).ADSGoogle Scholar
  44. 44.
    Harris, P. J. F. and Tsang, S. C., Carbon 36, 1859 (1998).Google Scholar
  45. 45.
    Wu, W. Z., Zhu, Z. P., Liu, Z. Y., Xie, Y. I., Zhang, J., and Hu, T. D., Carbon 41, 317 (2003).Google Scholar
  46. 46.
    Chen, C. P., Chang, T. H., and Wang T. F., Ceram. Int. 28, 925 (2002).Google Scholar
  47. 47.
    Ajayan, P. M., Chem. Rev. 99, 1787 (1999).PubMedGoogle Scholar
  48. 48.
    Wang, Y. H., Chiu, S. C., Lin, K. M., and Li, Y. Y., Carbon 42, 2535 (2004).Google Scholar
  49. 49.
    Kajiura, H., Huang, H. J., Tsutsui, S., Murakami, Y., and Miyakoshi, M., Carbon 40, 2423 (2002).Google Scholar
  50. 50.
    Osvath, Z., Koos, A. A., Horvath, Z. E., Gyulai, J., Benito, A. M., Martinez, M. T., Maser, W., and Biro, L. P., Mater. Sci. Eng., C 23, 561 (2003).Google Scholar
  51. 51.
    Sano, N., Wang, H. L., Chhowalla, M., Alexandrou, I., Amaratunga, G. A. J., Naito, M., and Kanki, T., Chem. Phys. Lett. 368, 331 (2003).Google Scholar
  52. 52.
    Ohno, S. and Uda, M., Trans. Jpn. Inst. Met. 48, 640 (1984).Google Scholar
  53. 53.
    Liu, T., Shao, H. Y., and Li, X. G., Nanotechnology 14, L1 (2003).Google Scholar
  54. 54.
    Shao, H. Y., Wang, Y. T., Xu, H. R., and Li, X. G., Mater. Sci. Eng., B 110, 221 (2004).Google Scholar
  55. 55.
    Grimes, C. A., Qian, D., Dickey, E. C., Allen, J. L., and Eklund, P. C., J. Appl. Phys. 87, 5642 (2000).PubMedADSGoogle Scholar
  56. 56.
    David, B., Pizurova, N., Schneeweiss, O., Bezdicka, P., Morjan, I., and Alexandrescu, R., J. Alloys Compd. 378, 112 (2004).Google Scholar
  57. 57.
    Dumitrache, F., Morjan, I., Alexandrescu, R., Ciupina, V., Prodan, G., Voicu, I., Fleaca, C., Albu, L., Savoiu, M., Sandu, I., Popovici, E., and Soare, I., Appl. Surf. Sci. 247, 25 (2005).ADSGoogle Scholar
  58. 58.
    Martelli, S., Mancini, A., Giorgi, R., Alexandrescu, R., Cojocaru, S., Crunteanu, A., Voicu, I., Balu, M., and Morjan, I., Appl. Surf. Sci. 154, 353 (2000).Google Scholar
  59. 59.
    Veintemillas-Verdaguer, S., Bomati-Miguel, O., and Morales, M. P., Scr. Mater. 47, 589 (2002).Google Scholar
  60. 60.
    Paul, B. K. and Moulik, S. P., J. Dispersion Sci. Technol. 18, 301 (1997).Google Scholar
  61. 61.
    Gutmann, H. and Kertes, A. S., J. Colloid Interface Sci. 51, 406 (1973).Google Scholar
  62. 62.
    Liu, J., Kim, A. Y., Wang, L. Q., Palmer, B. J., Chen, Y. L., Bruinsma, P., Bunker, B. C., Exarhos, G. J., Graff, G. L., Rieke, P. C., Fryxell, G. E., Virden, J. W., Tarasevich, B. J., and Chick, L. A., Adv. Colloid Interface Sci. 69, 131 (1996).Google Scholar
  63. 63.
    Wang, C. Y., Jiqng, W. Q., Zhou, Y., Wang, Y. N., and Chen, Z. Y., Mater. Res. Bull. 35, 53 (2000).Google Scholar
  64. 64.
    Ji, M., Chen, X., Wai, C. M., and Fulton, J. L., J. Am. Chem. Soc. 121, 2631 (1999).Google Scholar
  65. 65.
    Ohde, H., Hunt, F., and Wai, C. M., Chem. Mater. 13, 4130 (2001).Google Scholar
  66. 66.
    Li, F., Vipulanandan, C., and Mohanty, K. K., Colloids Surf., A 223, 103 (2003).Google Scholar
  67. 67.
    Xu, Z. Z., Wang, C. C., Yang, W. L., Deng, Y. H., and Fu, S. K., J. Magn. Magn. Mater. 277, 136 (2004).ADSGoogle Scholar
  68. 68.
    Deng, Y., Wang, L., Yang, W., Fu, S., and Elaissari, A., J. Magn. Magn. Mater. 257, 69 (2003).ADSGoogle Scholar
  69. 69.
    Tartaj, P. and Tartaj, J., Chem. Mater. 14, 536 (2002).Google Scholar
  70. 70.
    Santra, S., Tapec, R., Theodoropoulou, N., Dobson, J., Hebard, A., and Tan, W. H., Langmuir 17, 2900 (2001).Google Scholar
  71. 71.
    Yoshimura, M. and Somiya, S., Mater. Chem. Phys. 61, 1 (1999).Google Scholar
  72. 72.
    Cote, L. J., Teja, A. S., Wilkinson, A. P., and Zhang, Z. J., Fluid Phase Equilib. 210, 307 (2003).Google Scholar
  73. 73.
    Lee, J. S. and Choi, S. C., Mater. Lett. 58, 390 (2004).Google Scholar
  74. 74.
    Giri, S., Samanta, S., Maji, S., Ganguli, S., and Bhaumik, A., J. Magn. Magn. Mater. 285, 296 (2005).ADSGoogle Scholar
  75. 75.
    Chen, Z. Z., Shi, E. W., Li, W. J., Zheng, Y. Q., and Zhong, W. Z., Mater. Lett. 55, 281 (2002).Google Scholar
  76. 76.
    Mishra, D., Anand, S., Panda, R. K., and Das, R. P., Mater. Chem. Phys. 86, 132 (2004).Google Scholar
  77. 77.
    Ataie, A., Priamoon, M. R., Harris, I. R., and Ponton, C. B., J. Mater. Sci. 30, 5600 (1995).Google Scholar
  78. 78.
    Zhang, D. S., Yoshida, T., Furuta, K., and Minoura, H., J. Photochem. Photobiol., A 164, 159 (2004).Google Scholar
  79. 79.
    Tani, E., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc. 66, 11 (1983).Google Scholar
  80. 80.
    Dawson, W. J., Am. Ceram. Soc. Bull. 67, 1673 (1988).Google Scholar
  81. 81.
    Pivin, J. C. and Vincent, E., in Physics, Chemistry and Applications of Nanostructures: Reviews and Short Notes to Nanomeeting 2003 Minsk (Borisenko, V. E., Gaponenko, S. V., and Gurin, V. S., Editors), p. 285. World Scientific Publishing, London, 2003.Google Scholar
  82. 82.
    Nagineni, V. S., Zhao, S. H., Potluri, A., Liang, Y., Siriwardane, U., Seetala, N. V., Fang, J., Palmer, J., and Kuila, D., Ind. Eng. Chem. Res. 44, 5602 (2005).Google Scholar
  83. 83.
    Hseih, C. T., Huang, W. L., and Lue, J. T., J. Phys. Chem. Solids 63, 733 (2002).ADSGoogle Scholar
  84. 84.
    Lu, Y., Yin, Y. D., Mayers, B. T., and Xia, Y. N., Nano Lett. 2, 183 (2002).Google Scholar
  85. 85.
    Santos, A., Ardisson, J. D., Tambourgi, E. B., and Macedo, W. A. A., J. Magn. Magn. Mater. 177, 247 (1998).ADSGoogle Scholar
  86. 86.
    Ennas, G., Musinu, A., Piccaluga, G., Zedda, D., Gatteschi, D., Sangregorio, C., Stanger, J. L., Concas, G., and Spano, G., Chem. Mater. 10, 495 (1998).Google Scholar
  87. 87.
    Bruni, S., Cariati, F., Casu, M., Lai, A., Musinu, A., Piccaluga, G., and Solinas, S., Nanostruct. Mater. 11, 573 (1999).Google Scholar
  88. 88.
    Suslick, K. S., Choe, S. B., Cichowlas, A. A., and Grinstaff, M. W., Nature 353, 414 (1991).ADSGoogle Scholar
  89. 89.
    Suslick, K. S., Hyeon, T., Fang, M., and Cichowlas, A. A., in Advanced Catalysts and Nanostructured Materials (Moser, W. R., Editor), Chapter 8. Academic Press, New York, 1996.Google Scholar
  90. 90.
    Khalil, H., Mahajan, D., Rafailovich, M., Gelfer, M., and Pandya, K., Langmuir 20, 6896 (2004).PubMedGoogle Scholar
  91. 91.
    Pol, V. G., Motiei, M., Gedanken, A., Calderon-Moreno, J., and Mastai, Y., Chem. Mater. 15, 1378 (2003).Google Scholar
  92. 92.
    Vijayakumar, R., Koltypin, Y., Felner, I., and Gedanken, A., Mater. Sci. Eng., A 286, 101 (2000).Google Scholar
  93. 93.
    Gedanken, A., Ultrason. Sonochem. 11, 47 (2004).PubMedGoogle Scholar
  94. 94.
    Shafi, K. V. P. M., Ulman, A., Yan, X. Z., Yang, N. L., Estournes, C., White, H., and Rafailovich, M., Langmuir 17, 5093 (2001).Google Scholar
  95. 95.
    Roh, Y., Lauf, R. J., McMillan, A. D., Zhang, C., Rawn, C. J., Bai, J., and Phelps, T. J., Solid State Commun. 118, 529 (2001).Google Scholar
  96. 96.
    Tsang, S. C., Qiu, J. S., Harris, P. J. F., Fu, Q. J., and Zhang, N., Chem. Phys. Lett. 322, 553 (2000).Google Scholar
  97. 97.
    Janot, R. and Guerard, D., J. Alloys Compd. 333, 302 (2002).Google Scholar
  98. 98.
    Pithawalla, Y. B., El Shall, M. S., and Deevi, S. C., Intermetallics 8, 1225 (2000).Google Scholar
  99. 99.
    Murty, B. S. and Ranganathan, S., Int. Mater. Rev. 43, 101 (1998).Google Scholar
  100. 100.
    Chin, P. P., Ding, J., Yi, J. B., and Liu, B. H., J. Alloys Compd. 390, 255 (2005).Google Scholar
  101. 101.
    Wu, J. M., Mater. Lett. 48, 324 (2001).Google Scholar
  102. 102.
    Rawers, J. and Cook, D., Nanostruct. Mater. 11, 331 (1999).Google Scholar
  103. 103.
    Joseyphus, R. J., Narayanasamy, A., Nigam, A. K., and Krishnan, R., J. Magn. Magn. Mater. 296, 57 (2006).ADSGoogle Scholar
  104. 104.
    Zhan, Z. L., He, Y. D., Wang, D. R., and Gao, W., Intermetallics 14, 75 (2006).Google Scholar
  105. 105.
    Kalyanaraman, R., Yoo, S., Krupashankara, M. S., Sudarshan, T. S., and Dowding, R. J., Nanostruct. Mater. 10, 1379 (1998).Google Scholar
  106. 106.
    Yu, J. H., Lee, J. S., and Ahn, K. H., Scr. Mater. 44, 2213 (2001).Google Scholar
  107. 107.
    Kim, J. C. and Kim, B. K., Scr. Mater. 50, 969 (2004).Google Scholar
  108. 108.
    Yu, J. H., Kim, S. Y., Lee, J. S., and Ahn, K. H., Nanostruct. Mater. 12, 199 (1999).Google Scholar
  109. 109.
    Lester, E., Blood, P., Denyer, J., Giddings, D., Azzopardi., B., and Poliakoff, M., J. Supercrit. Fluids 37, 209 (2006).Google Scholar
  110. 110.
    Srivastava, D. N., Perkas, N., Gedanken, A., and Felner, I., J. Phys. Chem. B 106, 1878 (2002).Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2007

Authors and Affiliations

  1. 1.Department of Chemical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations