Skip to main content
Log in

Silver as anode in cryolite—alumina-based melts

  • Short Communication
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The anodic behaviour of silver was investigated in cryolite—alumina-based melt. Silver has a lower melting point (ca. 960°C) than the other metals considered as possible inert materials for aluminium electrolysis. The working temperature used in aluminium industry is approximately 960°C, depending on the melt composition. Therefore, the stability of silver during the anodic process was tested at 870°C in an acidic electrolyte consisting of 65.5 mass % Na3AlF6 + 22.9 mass % AlF3 + 5.7 mass % CaF2 + 3.9 mass % LiF + 2 mass % Al2O3 with the melting point ca. 850°C. The electrolyte without alumina was prepared as well, with the melting point ca. 860°C. The resulting cryolite ratio (CR = n(NaF)/n(AlF3)) for both electrolytes was equal to 1.6. The behaviour of the silver anode was studied by voltammetry measurements. The electrochemical study showed that an oxidation reaction occurred at a potential below the oxygen evolution potential. Silver was not found to be stable under oxygen evolution. The degradation of the silver anode was apparent after electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thonstad, J., Fellner, P., Haarberg, G. M., Híveš, J., Kvande, H., and Sterten, Å., Aluminium Electrolysis. Fundamentals of the Hall-Héroult Process, 3rd Edition. Aluminium-Verlag, Düsseldorf, 2001.

    Google Scholar 

  2. Lorentsen, O. A., Thesis, The Norwegian University of Science and Technology, Trondheim, 2000.

  3. Belyaev, A. I. and Studentsov, Ya. E., Legkie Metally 5, 15 (1936).

    CAS  Google Scholar 

  4. Belyaev, A. I. and Studentsov, Ya. E., Legkie Metally 6, 17 (1937).

    CAS  Google Scholar 

  5. Belyaev, A. I. and Studentsov, Ya. E., Legkie Metally 8, 7 (1938).

    Google Scholar 

  6. Ray, S. P. and Woods, R. W., U.S. 5,794,112 (1998).

  7. Ray, S. P., Woods, R. W., Dawless, R. K., and Hosler, R. B., U.S. 5,865,980 (1999).

  8. Ray, S. P., Woods, R. W., Dawless, R. K., Hosler, R. B., U.S. 6,126,799 (2000).

  9. Ray, S. P., Liu, X., and Weirauch, D. A., Jr., U.S. 6,217,739 (2001).

  10. Ray, S. P., Woods, R. W., Dawless, R. K., and Hosler, R. B., U.S. 6,332,969 (2001).

  11. Ray, S. P., Liu, X., and Weirauch, D. A., Jr., U.S. 6,372,119 (2002).

  12. Ray, S. P., Weirauch, D. A., Jr., and Liu, X., U.S. 6,423,195 (2002).

  13. Chamelot, P., Lafage, B., and Taxil, P., J. Electrochem. Soc. 143, 1570 (1996).

    Article  CAS  Google Scholar 

  14. Haupin, W. E., J. Metals 23, 46 (1971).

    CAS  Google Scholar 

  15. Solheim, A., Rolseth, S., Skybakmoen, E., Støen, L., Sterten, Å., and Støre, T., in Proceedings of the 124th TMS Annual Meeting, p. 451, Las Vegas, Nevada, 1995.

    Google Scholar 

  16. Barin, I., Knacke, O., and Kubaschewski, O., Thermochemical Properties of Inorganic Substances. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  17. Cassayre, L., Chamelot, P., Arurault, L., and Taxil, P., J. Appl. Electrochem. 35, 999 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kucharík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucharík, M., Chamelot, P., Cassayre, L. et al. Silver as anode in cryolite—alumina-based melts. Chem. Pap. 61, 142–145 (2007). https://doi.org/10.2478/s11696-007-0011-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-007-0011-x

Keywords

Navigation