Skip to main content
Log in

The zeta potential of kaolin suspensions measured by electrophoresis and electroacoustics

  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The zeta potentials of kaolin dilute and concentrated suspensions were monitored using the techniques of electrophoresis and electroacoustics, respectively. The effect of addition of salt (KCl), a polymer material (Triton X-100), and an anionic surfactant (sodium dodecyl sulphate, SDS) on the suspension properties was investigated by electrophoresis. Electroacoustics was employed for the measurement of zeta potentials for the highest possible kaolin content in suspension and the effect of dilution. The effect of aging of a freshly prepared sample and kaolin isoelectric point was also studied. Using both techniques it was noted that there was no isoelectric point, just a maximum value in the magnitude of the kaolin suspension zeta potential. These maxima were observed also in the presence of Triton X-100 and SDS. An increase of the concentration of KCl and SDS in suspension shifted the maxima towards more acidic values, while in the presence of Triton X-100 the position of the zeta potential maxima remained constant. Electroacoustic techniques revealed that a freshly prepared concentrated suspension requires about six hours to equilibrate to achieve a steady zeta potential. Diluting the concentrated suspensions led to decrease of the zeta potential as ions bound to the surface desorbed and screened the surface charge. The zeta potential maxima remained unchanged even after heating the powder in an oven at 200°C (to remove any organic material) thereby suggesting that the most likely explanation for the maxima is isomorphic substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, S. B., Dixon, D. R., and Scales, P. J., Colloids Surf., A 146, 281 (1999).

    Article  CAS  Google Scholar 

  2. Lapčík, L., Alince, B., and van de Ven, T. G. M., J. Pulp Pap. Sci. 21, J19 (1995).

    Google Scholar 

  3. Rice, B. P., Chen, C. G., Cloos, L., and Curliss, D., SAMPE J. 37, 7 (2001).

    CAS  Google Scholar 

  4. Chen, C. G. and Curliss, D., SAMPE J. 37, 11 (2001).

    CAS  Google Scholar 

  5. Jama, C. and Delobel, R., in Proceedings of ICCE-12, Tenerife, Spain, 2005.

    Google Scholar 

  6. Martínez-Vilariño, S., Hui, D., Miller, S. G., and Daniel, L., in Proceedings of ICCE-12, Tenerife, Spain, 2005.

    Google Scholar 

  7. Ophir, A., Dotan, A., Dodiuk, H., Belinsly, I., and Kenig, S., in Proceedings of ICCE-12, Tenerife, Spain, 2005.

    Google Scholar 

  8. O’Brien, R. W., J. Fluid Mech. 212, 81 (1990).

    Article  CAS  Google Scholar 

  9. O’Brien, R. W., Midmore, B. R., Lamb, A., and Hunter, R. J., Faraday Discuss. Chem. Soc. 90, 301 (1990).

    Article  CAS  Google Scholar 

  10. O’Brien, R. W., J. Colloid Interface Sci. 171, 495 (1995).

    Article  CAS  Google Scholar 

  11. Hunter, R. J., Colloids Surf., A 141, 37 (1998).

    Article  CAS  Google Scholar 

  12. Greenwood, R., Adv. Colloid Interface Sci. 106, 55 (2003).

    Article  CAS  Google Scholar 

  13. www.colloidal-dynamics.com. Application note.

  14. O’Brien, R. W. and Rowlands, W. N., J. Colloid Interface Sci. 159, 471 (1993).

    Article  CAS  Google Scholar 

  15. Rowlands, W. N. and O’Brien, R. W., J. Colloid Interface Sci. 175, 190 (1995).

    Article  CAS  Google Scholar 

  16. Hunter, R. J. and James, M., Clays Clay Miner. 40, 644 (1992).

    Article  CAS  Google Scholar 

  17. Mpofu, P., Addai-Mensah, J., and Ralston, J., J. Colloid Interface Sci. 271, 145 (2004).

    Article  CAS  Google Scholar 

  18. Mpofu, P., Addai-Mensah, J., and Ralston, J., Int. J. Miner. Process. 71, 247 (2003).

    Article  CAS  Google Scholar 

  19. Mpofu, P., Addai-Mensah, J., and Ralston, J., J. Colloid Interface Sci. 261, 349 (2003).

    Article  CAS  Google Scholar 

  20. Angove, M. J., Wells, J. D., and Johnson, B. B., Colloids Surf., A 146, 243 (1999).

    Article  CAS  Google Scholar 

  21. Taylor, M. L., Morris, G. E., Self, P. G., and Smart, R. S., J. Colloid Interface Sci. 250, 28 (2002).

    Article  CAS  Google Scholar 

  22. Janek, M. and Lagaly, G., Colloid Polym. Sci. 281, 293 (2003).

    Article  CAS  Google Scholar 

  23. Hunter, R. J. and Alexander, A. E., J. Colloid Sci. 18, 820 (1963).

    Article  CAS  Google Scholar 

  24. Williams, D. J. A. and Williams, K. P., J. Colloid Interface Sci. 65, 79 (1978).

    Article  CAS  Google Scholar 

  25. Kretzschmar, R., Holthoff, H., and Sandticher, H., J. Colloid Interface Sci. 202, 95 (1998).

    Article  CAS  Google Scholar 

  26. Kaya, A. and Yukselen, Y., J. Hazard. Mater. 120, 119 (2005).

    Article  CAS  Google Scholar 

  27. Yukselen, Y. and Kaya, A., Water, Air, Soil Pollut. 145, 155 (2003).

    Article  CAS  Google Scholar 

  28. Kaya, A. and Yukselen, Y., Can. Geotech. J. 42, 1280 (2005).

    Article  CAS  Google Scholar 

  29. Tekin, N., Demirbas, O., and Alkan, M., Microporous Mesoporous Mater. 85, 340 (2005).

    Article  CAS  Google Scholar 

  30. Olhoeft, G. R., Tables of Room Temperature Electrical Properties for Selected Rocks and Minerals with Dielectric Permittivity Statistics, p. 24. US Geological Survey Open File Report 77-993, 1979.

  31. Hussain, S. A., Demirci, S., and Ozbayoglu, G., J. Colloid Interface Sci. 184, 535 (1996).

    Article  CAS  Google Scholar 

  32. Greenwood, R. and Bergström, L., J. Eur. Ceram. Soc. 17, 537 (1997).

    Article  CAS  Google Scholar 

  33. Alkan, M., Demirbas, O., and Dogan, M., Microporous Mesoporous Mater. 83, 51 (2005).

    Article  CAS  Google Scholar 

  34. Ferris, A. P. and Jepson, W. B., J. Colloid Interface Sci. 51, 245 (1975).

    Article  CAS  Google Scholar 

  35. Waters, K. E., Greenwood, R. W., Rowson, N. A., Lapčík, L., Jr., and Lapčíková, B., Paper No. 159E, World Congress on Particle Technology 5. Orlando, Florida, 2006.

    Google Scholar 

  36. Torres-Sanchez, R. M., Basaldella, E. I., and Marco, J. F., J. Colloid Interface Sci. 215, 339 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenwood, R., Lapčíková, B., Surýnek, M. et al. The zeta potential of kaolin suspensions measured by electrophoresis and electroacoustics. Chem. Pap. 61, 83–92 (2007). https://doi.org/10.2478/s11696-007-0003-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-007-0003-x

Keywords

Navigation