Advertisement

Helminthologia

, Volume 51, Issue 2, pp 130–140 | Cite as

Comparative morphological and molecular identification of Haemonchus species in sheep

  • J. VadlejchEmail author
  • D. Lukešová
  • J. Vašek
  • P. Vejl
  • P. Sedlák
  • Z. Čadková
  • I. Langrová
  • I. Jankovská
  • O. Salaba
Article
  • 140 Downloads

Summary

A combined approach in the determination of Haemonchus nematodes from sheep was applied in this trial. Using selected morphological characters 90.2 % females and 84.2 % males of Haemonchus contortus and 9.8 % females and 15.8 % males of Haemonchus placei were identified. Although cluster analysis based on morphological identification clearly separated two Haemonchus species, H. contortus was exclusively detected in all specimens using restriction cleavage of the ITS-2 region with FspBI endonuclease as well as through the sequencing analysis. Because sheep from both farms have never had contact with other ruminants, and the farmers apply only closed flock turnover, we assume that only H. contortus mono-infection occurred on both farms. This opinion is also supported by molecular data. The most striking result of our study was the finding which indicates that the discriminant function is not able to accurately identify Haemonchus males at the species level.

Keywords

Barber’s pole worm spicule discriminant function PCR-RFLP sequencing internal transcribed spacer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achi, Y. L., Zinsstag, J., Yao, K., Yeo, N., Dorchies, P., Jacquiet, P. (2003): Host specificity of Haemonchus spp. for domestic ruminants in the savanna in northern Ivory Coast. Vet. Parasitol., 116: 151–158. DOI: 10.1016/S0304-4017(03)00258-9PubMedCrossRefGoogle Scholar
  2. Aumont, G., Gruner, L., Hostache, G. (2003): Comparison of the resistance to sympatric and allopatric isolates of Haemonchus contortus of Black Belly sheepin Guadeloupe (FWI) and of INRA 401 sheep in France. Vet. Parasitol., 116: 139–150. DOI: 10.1016/S0304-4017(03)00259-0PubMedCrossRefGoogle Scholar
  3. Bártíková, H., Skálová, L., Lamka, J., Szotáková, B., Várady, M. (2010): The effects of flubendazole and its metabolites on the larval development of Haemonchus contortus (Nematoda: Trichostrongylidae): an in vitro study. Helminthologia, 47(4): 269–272. DOI: 10.2478/s11687-010-0042-7CrossRefGoogle Scholar
  4. Bensch, S., PÉREZ-TRIS, J., Waldenström, J., Hellgren, O. (2004): Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: multiple cases of cryptic speciation? Evolution, 58(7): 1617–1621PubMedCrossRefGoogle Scholar
  5. Blouin, M. S., Yowell, C. A., Courtney, C. H., Dame, J. B. (1997): Haemonchus placei and Haemonchus contortus are distinct species based on mtDNA evidence. Int. J. Parasitol., 27(11): 1383–1387PubMedCrossRefGoogle Scholar
  6. Brasil, B. S., Nunes, R. L., Bastianetto, E., Drummond, M. G., Carvalho, D. C., Leite, R. C., Molento, M. B., Oliveira, D. A. (2012): Genetic diversity patterns of Haemonchus placei and Haemonchus contortus populations isolated from domestic ruminants in Brazil. Int. J. Parasitol., 42: 469–479PubMedCrossRefGoogle Scholar
  7. Bremner, K. C. (1955): Cytological studies on the specific distinctness of the Ovine and Bovine „strains“ of the nematode Haemonchus contortus (Rudolphi) Cobb (Nematoda: Trichostrongylidae). Aus. J. Zool., 3: 312–323CrossRefGoogle Scholar
  8. Chilton, N. B., Newton, L. A., Beveridge, I., Gasser, R. B. (2001): Evolutionary relationships of trichostrongyloid nematodes (Strongylida) inferred from ribosomal DNA sequence data. Mol. Phylogenet. Evol., 19(3): 367–386. DOI:10.1006/mpev.2001.0938PubMedCrossRefGoogle Scholar
  9. Criscione, C. D., Poulin, R., Blouin, M. S. (2005): Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol. Ecol., 14(8): 2247–2257. DOI: 10.1111/j.1365-294X.2005.02587.xPubMedCrossRefGoogle Scholar
  10. do Amarante, A.F. (2011): Why is it important to correctly identify Haemonchus species? Rev. Bras. Parasitol. Vet., 20(4): 263–268PubMedCrossRefGoogle Scholar
  11. Gasser, R. B. (2006): Molecular tools—advances, opportunities and prospects. Vet. Parasitol., 136(2): 69–89. DOI: 10.1016/j.vetpar.2005.12.002PubMedCrossRefGoogle Scholar
  12. Gibbons, L. M. (1979): Revision of the genus Haemonchus Cobb 1898 (Nematoda: Trichostrongylidae). Syst. Parasitol., 1: 3–24CrossRefGoogle Scholar
  13. Giudici, C. J., Cabaret, J., Durette-Desset, M. C. (1999): Description of Haemonchus placei (Place, 1893) (Nematoda, Trichostrongylidae, Haemonchinae), identification and intra-specific morphologic variability. Parasite, 6(4): 333–342PubMedGoogle Scholar
  14. Gruner, L., Cortet, J., Sauvé, C., Hoste, H. (2004): Regulation of Teladorsagia circumcincta and Trichostrongylus colubriformis worm populations by grazing sheep with differing resistance status. Vet. Res., 35(1): 91–101. DOI: 10.1051/vetres:2003043PubMedCrossRefGoogle Scholar
  15. Hall, T. A. (1999): BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser., 41: 95–98Google Scholar
  16. Hoberg, E. R., Lichtenfels, J. R., Gibbons, L. (2004): Phylogeny for species of Haemonchus (Nematoda: Trichostrongyloidea): considerations of their evolutionary history and global biogeography among Camelidae and Pecora (Artiodactyla). J. Parasitol., 90(5): 1085–1102PubMedCrossRefGoogle Scholar
  17. Hoste, H., Torres-Acosta, J. F., Aguilar-Caballero, A. J. (2008): Nutrition-parasite interactions in goats: is immunoregulation involved in the control of gastrointestinal nematodes? Parasite Immunol., 30(2): 79–88. DOI: 10.1111/j.1365-3024.2007.00987.xPubMedGoogle Scholar
  18. Hunt, P. W., Knox, M. R., Le Jambre, L. F., Mcnally, J., Anderson, L.J. (2008): Genetic and phenotypic differences between isolates of Haemonchus contortus in Australia. Int. J. Parasitol., 38: 885–900. DOI: 10.1016/j.ijpara.2007.11.001PubMedCrossRefGoogle Scholar
  19. Jacquiet, P., Cabaret, J., Cheikh, D., Thiam, E. (1997): Identification of Haemonchus species in domestic ruminants based on morphometrics of spicules. Parasitol. Res., 83(1): 82–86PubMedCrossRefGoogle Scholar
  20. Königová, A., Hrčková, G., Velebný, S., Dolinská, M., Molnár, L., Várady, M. (2012): Effect of albendazole therapy on susceptible and resistant Haemonchuscontortus larvae in Mongolian gerbils (Meriones unguiculatus) and distribution of inflammatory cells in the stomach wall. Helminthologia, 49(4): 211–220. DOI 10.2478/s11687-012-0040-zCrossRefGoogle Scholar
  21. Lichtenfels, J. R., Pilit, P. A., Le Jambre, L. F. (1986): Cuticular ridge patterns of Haemonchus contortus and Haemonchus placei (Nematoda: Trichostrongyloidea). Proceedings of the Helminthological Society of Washington, 53(1): 94–101Google Scholar
  22. Lichtenfels, J. R., Pilit, P. A., Le Jambre, L. F. (1988): Spicule lengths of the ruminant stomach nematodes Haemonchus contortus, Haemonchus placei, and their hybrids. Proceedings of the Helminthological Society of Washington, 55(1): 97–100Google Scholar
  23. Lichtenfels, J. R., Pilitt, P. A., Hoberg, E. P. (1994): New morphological characters for identifying individual specimens of Haemonchus spp. (Nematoda: Trichostrongyloidea) and a key to species in ruminants of North America. J. Parasitol., 80(1): 107–119PubMedCrossRefGoogle Scholar
  24. Reinecke, R. K., De Villier, I. L., Joubert, G. (1982): The effect of predosing calves with Trichostrongylus axei on subsequent challenge with Haemonchus placei. Onderstepoort J. Vet. Res., 49(3): 159–161PubMedGoogle Scholar
  25. Riggs N. L. (2001) Experimental cross-infections of Haemonchus placei (Place, 1893) in sheep and cattle. Vet. Parasitol., 94: 191–197PubMedCrossRefGoogle Scholar
  26. Roberts, F. H. S., Turner, H. N., Mckevett, M. (1954): On the specific distinctness of the ovine and bovine „strains” of Haemocnhus contortus (Rudolphi) Cobb (Nematoda: Trichostrongylidae). Aus. J. Zool., 2: 275–295CrossRefGoogle Scholar
  27. Roepstorff, A., Nansen, P. (1998): Epidemiology, diagnosis and control of helminth parasites of swine. Rome, IT, FAO, 161 pp.Google Scholar
  28. Saddiqi, H. A., Jabbar, A., Sarwar, M., Iqbal, Z., Muhammad, G., Nisa, M., Shahzad, A. (2011): Small ruminant resistance against gastrointestinal nematodes: a case of Haemonchus contortus. Parasitol. Res., 109: 1483–1500. DOI: 10.1007/s00436-011-2576-0PubMedCrossRefGoogle Scholar
  29. Scott, I., Sutherland, I. (2009): Gastrointestinal Nematodes of Sheep and Cattle: Biology and Control. Oxford, UK, Wiley-Blackwell, 242 pp.Google Scholar
  30. Stevenson, L. A., Chilton, N. B., Gasser, R. B. (1995): Differentiation of Haemonchus placei from H. contortus (Nematoda: Trichostrongylidae) by the ribosomal DNA second internal transcribed spacer. Int. J. Parasitol., 25(4): 483–488PubMedCrossRefGoogle Scholar
  31. Strain, S. A., Stear, M. J. (2001): The influence of protein supplementation on the immune response to Haemonchus contortus. Parasite Immunol., 23: 527–531PubMedCrossRefGoogle Scholar
  32. Šnábel, V., Königová, A., Dolinská, M., Wolstenholme, A. J., Várady, M. (2012): Allozyme analysis of Haemonchus contortus resistant and susceptible to anthelmintics, with an indication of dipeptidases associated with resistance. Helminthologia, 49(3): 128–133. DOI: 10.2478/s11687-012-0027-9CrossRefGoogle Scholar
  33. Taylor, M. A., Coop, R. L., Wall, R. L. (2007): Veterinary Parasitology. 3rd Edition, Oxford, UK, Blackwell Publishing, 874 pp.Google Scholar
  34. Terefe, G., Yacob, H. T., Grisez, C., Prevot, F., Dumas, E., Bergeaud, J. P., Dorchies, P., Hoste, H., Jacquiet, P. (2005): Haemonchus contortus egg excretion and female length reduction in sheep previously infected with Oestrus ovis (Diptera: Oestridae) larvae. Vet. Parasitol., 128(3–4): 271–283. DOI:10.1016/j.vetpar.2004.11.036PubMedCrossRefGoogle Scholar
  35. Thomas, N., Teshale, S., Kumsa, B. (2007): Abomasal nematodes of sheep and goats slaughtered in Awassa (Ethiopia): species composition, prevalence and vulvar morphology. Helminthologia, 44(2): 70–75. DOI: 10.2478/s11687-007-0006-8CrossRefGoogle Scholar
  36. Thompson, J. D., Higgins, D. G., Gibson, T. J. (1994): CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22(22): 4673–4680PubMedCentralPubMedCrossRefGoogle Scholar
  37. Troell, K., Mattsson, J. G., Alderborn, A., Höglund, J. (2003): Pyrosequencing analysis identifies discrete populations of Haemonchus contortus from small ruminants. Int. J. Parasitol., 33(7): 765–771. DOI:10.1016/S0020-7519(03)00068-7PubMedCrossRefGoogle Scholar
  38. van Wyk, J. A., Cabaret, J., Michael, L. M. (2004): Morphological identification of nematode larvae of small ruminants and cattle simplified. Vet. Parasitol., 119(4): 277–306. DOI:10.1016/j.vetpar.2003.11.012PubMedCrossRefGoogle Scholar
  39. Várady, M., Čudeková, P., Čorba, J. (2007): In vitro detection of benzimidazole resistance in Haemonchus contortus: egg hatch test versus larval development test. Vet Parasitol., 149(1–2): 104–110. DOI: 10.1016/j.vetpar.2007.07.011PubMedCrossRefGoogle Scholar
  40. Várady, M., Čorba, J., Letková, V., Kováč, G. (2009): Comparison of two versions of larval development test to detect anthelmintic resistance in Haemonchus contortus. Vet. Parasitol., 160(3–4): 267–271. DOI: 10.1016/j.vetpar.2008.11.010PubMedCrossRefGoogle Scholar
  41. Zarlenga, D. S., Stringfellow, F., Nobary, M., Lichtenfels, J. R. (1994): Cloning and characterization of ribosomal RNA genes from three species of Haemonchus (Nematoda: Trichostrongyloidea) and identification of PCR primers for rapid differentiation. Exp. Parasitol., 78: 28–36PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • J. Vadlejch
    • 1
    Email author
  • D. Lukešová
    • 2
  • J. Vašek
    • 3
  • P. Vejl
    • 3
  • P. Sedlák
    • 3
  • Z. Čadková
    • 1
  • I. Langrová
    • 1
  • I. Jankovská
    • 1
  • O. Salaba
    • 1
  1. 1.Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PraguePrague 6 - SuchdolCzech Republic
  2. 2.Department of Animal Sciences and Food Processing in Tropics and Subtropics, Institute of Tropics and SubtropicsCzech University of Life Sciences PraguePrague 6 - SuchdolCzech Republic
  3. 3.Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PraguePrague 6 - SuchdolCzech Republic

Personalised recommendations