Abundance and diversity of soil nematodes as influenced by different types of organic manure

Summary

Nematode abundance and diversity from different types of organic manure soil treatments were investigated in a longterm field experiment carried out in Qu-Zhou experimental station, China Agricultural University. The composts used in the experiment were a traditional compost (C) (60 % straw, 30 % livestock dung, 5 % cottonseed-pressed trash and 5 % brans), traditional compost and chicken dung compost (60 % straw, 30 % chiken dung, 5 % cottonseedpressed trash and 5 % brans) added with effective microorganisms, EMC and EMCDC respectively. Six treatments were arranged according to a randomized block design with three replicates per treatment. Treatments were incorporation into the soil of compost EMC, EMCDC, and C each at the rates of 7.5 and 15 t/ha. Plots were sown with winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) every year from 1997 to 2004. Overall, 28 nematode genera were found. Seven genera were bacterivores, 3 genera were fungivores, 13 genera were plantparasites and 5 genera were omnivores-predators. The Rhabditis, Cephalobus, Helicotylenchus were dominant genera in the present study. The bacterivores and plantparasitic nematodes were the dominant trophic groups except in C treatment. Nematode abundance per 100 g dried soil ranged from 372 to 553. Addition of effective microorganism increased the number and proportion of bacterivorous nematodes and decreased the number and proportion of plant-parasitic nematodes compared to traditional compost C. Total number of nematode was significantly influenced by compost amount, but didn’t significantly influence by EM agent. Total abundance of nematode was positively correlated with the content of soil organic matter, total N, available P and K. The long-term addition of EM agent hasn’t adverse effect on soil nematode community.

This is a preview of subscription content, log in to check access.

References

  1. Akhtar, M. (1999): Plant growth and nematode dynamics in response to soil amendments with neem products, urea and compost. Bioresour. Technol., 69: 181–183

    Article  CAS  Google Scholar 

  2. Arancon, N.Q., Galvis, P., Edwards, C., Yardim, E. (2003): The trophic diversity of nematode communities in soil treated with vermicompost. Pedobiologia, 47: 736–740

    Google Scholar 

  3. Barker, K. R., Carter, C. C., Sasser, J. N. (1985): An Advanced Treatise on Meloidogyne, Methodology, Vol. 2. North Carolina State University Graphics, Raleigh, NC, pp. 223

    Google Scholar 

  4. Blakemore, L. C., Searle, P. L., Daly, B. K. (1972): Methods for chemical analysis of soils. New Zealand Soil Bureau Report 10 A. Government Printer, Wellington.

    Google Scholar 

  5. Bongers, T. (1990): The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83: 14–19

    Article  Google Scholar 

  6. Bremner, J. M. (1996): Nitrogen-Total. In: Sparks, D. L. (Ed) Methods of Soil Analysis. Part 3. Soil Science Society of America. Book Series 5, Madison, pp. 1085–1086

  7. Bulluck, L. R., Barker, K. R., Ristaino, J. B. (2002): Influences of organic and synthetic soil fertility amendments on nematode trophic groups and community dynamics under tomatoes. Appl. Soil Ecol., 21: 233–250

    Article  Google Scholar 

  8. D’addabbo, T., Sasanelli, N., Lamberti, F., Greco, P., Carella, A. (2003): Olive pomace and chicken manure amendments for control of Meloidogyne incognita over two crop cycles. Nematropica, 33: 1–7

    Google Scholar 

  9. Debosz, K., Rasmussen, P. H., Pedersen, A. R. (1999): Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input. Appl. Soil Ecol., 13: 209–218

    Article  Google Scholar 

  10. Dik, R.P. (1992): A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric. Ecosyst. Environ., 40: 25–36

    Article  Google Scholar 

  11. Ferris, H., Bongers T., De Goede, R. G. M. (2001): A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl. Soil Ecol., 18: 13–29

    Article  Google Scholar 

  12. Ferris, H., Venette, R. C., Scow, K. M. (2004): Soil management to enhance bacterivore and fungivore nematode populations and their nitrogen mineralisation function. Appl. Soil Ecol., 25: 19–35

    Article  Google Scholar 

  13. Ferris, H., Matute, M. M. (2003): Structural and functional succession in the nematode fauna of a soil food web. Appl. Soil Ecol., 23: 93–110

    Article  Google Scholar 

  14. Forge, T. A., Bittman, S., Kowalenko, C. G. (2005): Responses of grassland soil nematodes and protozoa to multi-year and single-year applications of dairy manure slurry and fertilizer. Soil Biol. Biochem., 37: 1751–1762

    Article  CAS  Google Scholar 

  15. Gruzdeva, L. I., Matveeva, E. M., Kovalenko, T. E. (2007): Changes in soil nematode communities under the impact of fertilizers. Eurasian Soil Sci., 40, 681–693

    Article  Google Scholar 

  16. Hu, C., Cao, Z. P., Luo, Y. R., Ma, Y. L. (2007): Effects of long-term application of microorganismic compost or vermicompost on soil fertility and microbial biomass carbon. Chin. J. Eco-Agric. (In Chinese), 15(3): 48–51

    CAS  Google Scholar 

  17. Institute of Soil Science, Chinese Academy of Sciences (ISSCAS) (ed.). (1978). Physical-Chemical Analysis of Soil. Shanghai Science and Technology Publishing House, Shanghai. 593pp. (In Chinese)

    Google Scholar 

  18. Jiang, D. M., Li, Q., Liu, F. M., Jiang, Y., Liang, W. J. (2007): Vertical distribution of soil nematodes in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land, Northeast China. Ecol. Res., 22: 49–56

    Article  Google Scholar 

  19. Li, Q., Liang, W. J., Jiang, Y., Shi, Y., Zhu, J. G., Neher, D. A. (2007): Effect of elevated CO2 and N fertilisation on soil nematode abundance and diversity in a wheat field. Appl. Soil Ecol., 36: 63–69

    Article  Google Scholar 

  20. Liang, W. J., Lavian, I., Steinberger, Y. (1999): Dynamics of nematode community composition in a potato field. Pedobiologia, 43: 459–469

    Google Scholar 

  21. Liang, W. J., Chen, L. J., Li, Q., Wang, P., Duan, Y. X. (2002): Responses of nematode communities to inorganic fertilizer disturbance in a farmland ecosystem. Pedosphere, 12(3): 193–200

    Google Scholar 

  22. Liang, W. J., Lou, Y. L., Li, Q., Zhong, S., Zhang, X. K., Wang, J. K. (2008): Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biol. Biochem., DOI:10.1016/j.soilbio.2008.06.018

    Google Scholar 

  23. Liu, M. Q., Chen, X. Y., Qin, J. T., Wang, D., Griffiths, B., Hu, F. (2008): A sequential extraction procedure reveals that water management affects soil nematode communities in paddy fields. Appl. Soil Ecol., 40: 250–259

    Article  Google Scholar 

  24. Lu, R. K. (1999): Methods of Soil and Agricultural Chemistry. China Agriculture Science and Technology Press, Beijing. (In Chinese)

    Google Scholar 

  25. Mcsorley, R., Stansly, P. A., Noling, J. W., Obreza, T. A., Conner, J. M. (1999): Impact of soil organic mendments and fumigation on plant parasitic nematodes in a southern Florida vegetable filed. Nematropica, 27: 181–189

    Google Scholar 

  26. Mal, W. F., Lyon, H. H. (1975): Pictorial key to genera of pant-parasitic nematodes. Cornell University Press. Ithaca & London. pp. 1–219

    Google Scholar 

  27. Mcsorley, R., Frederick, J. J. (1996): Nematode community structure in rows and between rows of a soybean field. Fundam. Appl. Nematol., 19: 251–261

    Google Scholar 

  28. Ni, Y. Z., Li, W. J. (1998): Study of EM technology application. Beijing: China Agricultural University Press, 15–32 (In Chinese)

    Google Scholar 

  29. Neher, D. A. (2001): Role of nematodes in soil health and their use as indicators. J. Nematol., 33(4): 161–168

    PubMed  CAS  Google Scholar 

  30. Okada, H., Harada, H. (2007): Effects of tillage and fertilizer on nematode communities in a Japanese soybean field. Appl. Soil Ecol., 35: 582–598

    Article  Google Scholar 

  31. Ou, W., Liang, W. J., Jiang, Y., Li, Q., Wen, D. Z. (2005): Vertical distribution of soil nematodes under different land use types in an aquic brown soil. Pedobiologia, 49: 139–148

    Article  Google Scholar 

  32. Pen-Mouratov, S., Barness, G., Steinberger, Y. (2008): Effect of desert plant ecophysiological adaptation on soil nematode communities. Eur. J. Soil Biol., 44: 298–308

    Article  Google Scholar 

  33. Pen-Mouratov, S., Rakhimbaev, M., Barness, G., Steinberger, Y. (2004): Spatial and temporal dynamics of nematode populations under Zygophyllum dumosum in arid environments. Eur. J. Soil Biol., 40: 31–46

    Article  Google Scholar 

  34. Pielou, E. C. (1975): Ecological diversity. New York: John Wiley, pp. 165

    Google Scholar 

  35. Porazinska, D. L., Duncan, L. W., Mcsorley, R., Graham, J. H. (1999): Nematode communities as indicators of status and processes of a soil ecosystem influenced by agricultural management practices. Appl. Soil Ecol., 13: 69–86

    Article  Google Scholar 

  36. Raun, W. R., Johnson, G. V. (1999): Improving nitrogen use efficiency for cereal production. Agron. J., 91: 357–363

    Article  Google Scholar 

  37. Renčo, M., D’ADDABBO, T., Sasanelli, N., Papajova, I. (2007): The effect of five composts of different origin on the survival and reproduction of Globodera rostochiensis. Nematology, 9(4): 537–543

    Article  Google Scholar 

  38. Ruess, L. (2003): Nematode soil faunal analysis of decomposition pathways in different ecosystems. Nematology, 5, 179–181

    Article  Google Scholar 

  39. Sánchez-Moreno, S., Minoshima, H., Ferris, H., Jackson, L. E. (2006): Linking soil properties and nematode community composition: effects of soil management on soil food webs. Nematology, 8: 703–715

    Article  Google Scholar 

  40. Sánchez-Moreno, S., Nicola N. L., Ferris H., Zalom F. G. (2009): Effects of agricultural management on nematode-mite assemblages: Soil food web indices as predictors of mite community composition. Appl. Soil Ecol., 41: 107–117

    Article  Google Scholar 

  41. Sasanelli, N. (1994): Tables of Nematode-Pathogenicity. Nematol. Mediterr., 22: 153–157

    Google Scholar 

  42. Sasanelli, N., D’Addabbo T., Convertini, G., Ferri, D. (2002): Soil Phytoparasitic Nematodes Suppression and Changes of Chemical Properties Determined by Waste Residues from Olive Oil Extraction. Proc. 12th ISCO Conf., May 26–31, 2002 Beijing China. Vol. III: 588–592

    Google Scholar 

  43. Sasanelli N., Ferri D., Convertini G., D’Addabbo, T. (2006): Nematicidal and agronomical effects of composted olive pomace amendments. Proc. 12th Congr. of the Mediterr. Phytopathol. Union, 11–15 June, 565–567

  44. Shannon, C. E., Weaver, W. (1949): The Mathematical Theory of Communication. Urbana, IL: University of Illinois Press.

    Google Scholar 

  45. Simpson, E. H. (1949): Measurement of diversity. Nature, 163: 668

    Google Scholar 

  46. Sochová, I., Hofman, J., Holoubek, I. (2006): Using nematodes in soil ecotoxicology. Environ. Int., 32: 374–383

    Article  PubMed  CAS  Google Scholar 

  47. Spedding, T. A., Hamel, C., Mehuys, G. R., Madramootoo, C. A. (2004): Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol. Biochem., 36: 499–512

    Article  CAS  Google Scholar 

  48. Steinberger, Y., Sarig, S. (1993): Response by soil nematode populations in the soil microbial biomass to a rain episode in the hot, dry Negev Desert. Biol. Fertil. Soils, 16: 188–192

    Article  Google Scholar 

  49. Steinberger, Y., Liang, W. J., Savkina, E., Mesh, T., Barness, G. (2001): Nematode community composition and diversity associated with a topoclimatic transect in a rain shadow desert. Eur. J. Soil Biol., 37: 315–320

    Article  Google Scholar 

  50. Tester, C. F. (1990): Organic amendment effects on physical and chemical properties of a sandy soil. Soil Sci. Soc. Am. J., 65: 1284–1292

    Google Scholar 

  51. Tong, X. J., Li, W. J., Ni, Y. Z. (2003): Effects of effective microorganisms (EM) compost on summer maize growth and development. Chin. J. Eco-Agric., 11(4):18–20 (In Chinese)

    Google Scholar 

  52. Tong, X. J., Li, W. J., Li, J., Ni, Y. Z. (2003): Effect of effective microorganisms compost on winter wheat growth. Res. Agric. Modernization, 24(6): 456–463 (In Chinese)

    Google Scholar 

  53. Twinn, D. C. (1974): Nematodes. In: Dickinson, C. H., Pugh, G. J. F. (Eds) Biology of Plant Litter Decomposition. London, UK: Academic Press, pp. 421–465

    Google Scholar 

  54. Urzelai, A., Hernández, A. J., Pastor, J. (2000): Biotic indices based on soil nematode communities for assessing soil quality in terrestrial ecosystems. Sci. Total Environ., 247, 253–261

    Article  PubMed  CAS  Google Scholar 

  55. Wang, K. H., Mcsorley, R., Marshall, A., Gallaher, R. N. (2006): Influence of organic crotalaria juncea hay and ammonium nitrate fertilizers on soil nematode communities. Appl. Soil Ecol., 31: 186–198

    Article  Google Scholar 

  56. Wang, L. G., Li, W. J., Qiu, J. J., Ma, Y. L., Wang, Y, C. (2004): Effects of biological organic fertilizer on crops growth, soil fertility and yield. Soil and Fertil., (5): 12–16 (In Chinese)

    CAS  Google Scholar 

  57. Wasilewska, L. (1994): The effect of age of meadows on succession and diversity in soil nematode communities. Pedobiologia, 38, 1–11

    Google Scholar 

  58. Wasilewska, L. (1998): Changes in the proportions of groups of bacteriovorous soil nematodes with different life strategies in relation to environmental conditions. Appl. Soil Ecol., 9, 215–220

    Article  Google Scholar 

  59. Yeates, G. W. (1994): Modification and qualification of the nematode maturity index. Pedobiologia, 38, 97–101

    Google Scholar 

  60. Yeates, G. W., Bongers, T. De Goede R. G. M., Freckman D.W., Georgieva, S. S. (1993): Feeding habits in soil nematode families and genera — an outline for ecologists. J. Nematol., 25(3): 315–331

    PubMed  CAS  Google Scholar 

  61. Yeates, G. W., King K. L. (1997): Soil nematodes as indicators of the effect of management on grasslands in the New England Tablelands (NSW): Comparison of native and improved grasslands. Pedobiologia, 41, 526–536

    Google Scholar 

  62. Yeates, G. W., Bird, A. F. (1994): Some observations on the influence of agricultural practices on the nematode faunae of some South Australian soils. Fundam. Appl. Nematol., 7: 133–145

    Google Scholar 

  63. Ying, W. Y. (1998): Pictorial keys to soil animals of China. Beijing: China Science Press, pp. 51–89 (In Chinese)

    Google Scholar 

  64. Zhang, X. K., Liang, W. J., Jiang, D. M., Liu, Z. M., Jiang, S. W. (2007): Soil nematode community structure in a Chinese sand dune system. Helminthologia, 44(4): 204–209

    Article  Google Scholar 

  65. Zhou, L. H., Ni, Y. Z., Li, W. J. (2005): Effects of longterm application of EM biological-organic fertilizer on winter wheat production. Trans. CSAE, 21(Supp): 221–224 (In Chinese)

    CAS  Google Scholar 

  66. Zolda, P. (2006): Nematode communities of grazed and ungrazed semi-natural steppe grasslands in Eastern Austria. Pedobiologia, 50: 11–22

    Google Scholar 

  67. Zolda, P., Hánel, L. (2007): Soil nematodes inhabiting an original dry meadow and an abandoned vineyard in the National Park Seewinkel, Eastern Austria. Helminthologia, 2007, 44(3): 112–117

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. C. Qi.

About this article

Cite this article

Hu, C., Qi, Y.C. Abundance and diversity of soil nematodes as influenced by different types of organic manure. Helminthologia 47, 58–66 (2010). https://doi.org/10.2478/s11687-010-0009-8

Download citation

Keywords

  • effective microorganism
  • organic manure
  • soil nematodes
  • biodiversity