Hydro-Ethanolic Extract of Mentha pulegium Exhibit Anthelmintic and Antioxidant Proprieties In Vitro and In Vivo

Abstract

Introduction

During recent decades, the emergence of chemoresistance among synthetic anthelmintic drugs has increased the interest in screening novel natural anthelmintic compounds derived from plants. The current study is aimed to determine the chemical profile, anthelmintic and antioxidant properties of Mentha pulegium hydro-ethanolic extract.

Materials and Methods

Two tests were used to assess the in vitro anthelmintic activity of the hydro-ethanolic extract of M. pulegium against Haemonchus contortus; egg hatch assay (EHA) and adult worm motility (AWM) assay. M. pulegium extracts at the doses of 500, 1000, 2000 and 4000 mg/kg were evaluated in vivo in mice infected with Heligmosomoides polygyrus. The anthelmintic efficacy was monitored using faecal egg count reduction (FECR) and total worm count reduction (TWCR). The antioxidant activity of M. pulegium extract was evaluated by testing the total antioxidant capacity and the DPPH free radical-scavenging ability.

Results

Chromatographic characterization of M. pulegium composition using RP-HPLC revealed the presence of phenolic acids such as syringic acid, ferulic acid and the presence of flavonoid compounds, such as isorhamnetin-3-O-glucoside and kaempferol-3-O-rutinoside. We observed 91.58% inhibition in the EHA at 8 mg/mL after 48 h of incubation (IC50=1.82 mg/mL). In the AWM assay, M. pulegium extract achieved 65.2% inhibition at 8 mg/mL after 8 h. The highest dose (4000 mg/kg) showed a significant nematicidal effect 7 days post-treatment by inducing 60.39% FECR and 71.6% TWCR. We also report strong in vivo antioxidant capacity of the extract, as revealed by a significant increase of the enzymatic activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymes in mice infected with H. polygyrus.

Conclusion

Together, the results in this paper suggest that M. pulegium possesses anthelmintic properties and could be a potential source of novel compounds for the control of helminth parasites as well as its associated oxidative damage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Aebi H (1984) [13]Catalase in vitro. In: Methods in enzymology. Elsevier, pp. 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

  2. 2.

    Akkari H, Hajaji S, Bchir F, Rekik M, Gharbi M (2016) Correlation of polyphenolic content with radical-scavenging capacity and anthelmintic effects of Rubus ulmifolius (Rosaceae) against Haemonchus contortus. Vet Parasitol 221:46–53. https://doi.org/10.1016/j.vetpar.2016.03.007

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Akkari H, Hajaji S, Rekik M, Sebai E, Hamza H, Darghouth MA, Gharbi M (2016) Potential anthelmintic effect of Capparis spinosa (Capparidaceae) as related to its polyphenolic content and antioxidant activity. Vet Med 61:308–316. https://doi.org/10.17221/169/2015-VETMED

    CAS  Article  Google Scholar 

  4. 4.

    Akkari H, Jebali J, Gharbi M, Mhadhbi M, Awadi S, Darghouth MA (2013) Epidemiological study of sympatric Haemonchus species and genetic characterization of Haemonchus contortus in domestic ruminants in Tunisia. Vet. Parasitol. 193:118–125. https://doi.org/10.1016/j.vetpar.2012.12.014

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Akkari H, Rtibi K, Bchir F, Rekik M, Darghouth MA, Gharbi M (2014) In vitro evidence that the pastoral Artemisia campestris species exerts an anthelmintic effect on Haemonchus contortus from sheep. Vet. Res. Commun. 38:249–255

    Article  Google Scholar 

  6. 6.

    Athanasiadou S, Kyriazakis I, Jackson F, Coop RL (2001) Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: in vitro and in vivo studies. Vet. Parasitol. 99:205–219. https://doi.org/10.1016/S0304-4017(01)00467-8

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Azando EVB, Hounzangbé-Adoté MS, Olounladé PA, Brunet S, Fabre N, Valentin A, Hoste H (2011) Involvement of tannins and flavonoids in the in vitro effects of Newbouldia laevis and Zanthoxylum zanthoxyloïdes extracts on the exsheathment of third-stage infective larvae of gastrointestinal nematodes. Vet. Parasitol. 180:292–297. https://doi.org/10.1016/j.vetpar.2011.03.010

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Beyer WF Jr, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem. 161:559–566

    CAS  Article  Google Scholar 

  9. 9.

    Bouchra C, Achouri M, Hassani LI, Hmamouchi M (2003) Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr. J. Ethnopharmacol. 89:165–169. https://doi.org/10.1016/0003-2697(87)90489-1

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Cavalcante GS, de Morais SM, Andre WP, Ribeiro WL, Rodrigues AL, De Lira FC, Viana JM, Bevilaqua CM (2016) Chemical composition and in vitro activity of Calotropis procera (Ait.) latex on Haemonchus contortus. Vet. Parasitol. 226:22–25. https://doi.org/10.1016/j.vetpar.2016.06.012

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Celi P, Eppleston J, Armstrong A, Watt B (2010) Selenium supplementation increases wool growth and reduce faecal egg counts of Merino weaners in a selenium deficient area. Anim Prod. 50(7):688–692. https://doi.org/10.1071/AN09168

    CAS  Article  Google Scholar 

  12. 12.

    Coles GC, Bauer C, Borgsteede FHM, Geerts S, Klei TR, Taylor MA, Waller PJ (1992) World Association for the Advancement of Veterinary Parasitology (WAAVP) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 44:35–44. https://doi.org/10.1016/0304-4017(92)90141-U

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Craigmill AL (2003) A physiologically based pharmacokinetic model for oxytetracycline residues in sheep. J Vet Pharmacol Ther 26(1):55–63. https://doi.org/10.1046/j.1365-2885.2003.00451.x

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014. https://doi.org/10.1021/jf0115589

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Dimitrijević B, Borozan S, Katić-Radivojević S, Stojanović S (2012) Effects of infection intensity with Strongyloides papillosus and albendazole treatment on development of oxidative/nitrosative stress in sheep. Vet Parasitol 186:364–375. https://doi.org/10.1016/j.vetpar.2011.11.017

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Dorman HD, Koşar M, Kahlos K, Holm Y, Hiltunen R (2003) Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J Agric Food Chem 51:4563–4569. https://doi.org/10.1021/jf034108k

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Eguale T, Tilahun G, Debella A, Feleke A, Makonnen E (2007) In vitro and in vivo anthelmintic activity of crude extracts of Coriandrum sativum against Haemonchus contortus. J. Ethnopharmacol. 110:428–433. https://doi.org/10.1016/j.jep.2006.10.003

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Enriquez JB (1993) Les Médicaments anthelminthiques utilisés en médecine des carnivores domestiques. Activité Toxicité Rec Méd Vét 189:499–512

    Google Scholar 

  19. 19.

    Ezzine O, Dhahri S, Akkari H, Ben Jamaa ML (2018) Larvicidal activity of essential oil of Mentha pulegium on larvae of Orgyia trigotephras Boisduval, 1829 (Lepidoptera, Erebidae). J New Sci 20:3423–3428

    Google Scholar 

  20. 20.

    Fatiha B, Didier H, Naima G, Khodir M, Martin K, Léocadie K, Caroline S, Mohamed C, Pierre D (2015) Phenolic composition, in vitro antioxidant effects and tyrosinase inhibitory activity of three Algerian Mentha species: M. spicata (L.), M. pulegium (L.) and M. rotundifolia (L.) Huds (Lamiaceae). Ind Crops Prod 74:722–730. https://doi.org/10.1016/j.indcrop.2015.04.038

    CAS  Article  Google Scholar 

  21. 21.

    Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. In: Methods in enzymology. Elsevier, pp 114–120. https://doi.org/10.1016/S0076-6879(84)05015-1

  22. 22.

    Gaudin E, Simon M, Quijada J, Schelcher F, Sutra JF, Lespine A, Hoste H (2016) Efficacy of sainfoin (Onobrychis viciifolia) pellets against multi resistant Haemonchus contortus and interaction with oral ivermectin: Implications for on-farm control. Vet Parasitol 227:122–129. https://doi.org/10.1016/j.vetpar.2016.08.002

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Geary TG, Sangster NC, Thompson DP (1999) Frontiers in anthelmintic pharmacology. Vet Parasitol 84:275–295. https://doi.org/10.1016/S0304-4017(99)00042-4

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Githiori JB (2004) Evaluation of anthelmintic properties of ethnoveterinary plant preparations used as livestock dewormers by pastoralists and small holder farmers in Kenya. Doctoral Thesis. Swedish University of Agricultural Sciences, Uppsala, Sweden

  25. 25.

    Givlait (2016) Interprofessional group of red meat and milk. https://www.givlait.com.tn/. Accessed 12 Jan 2017

  26. 26.

    Hajaji S, Jabri MA, Alimi D, Rekik M, Akkari H (2019) Chamomile methanolic extract mitigates small bowel inflammation and ROS overload related to the intestinal nematodes infection in mice. Acta Parasitol 64:152–161

    CAS  Article  Google Scholar 

  27. 27.

    Hatano T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem Pharm Bull (Tokyo) 36:2090–2097. https://doi.org/10.1248/cpb.36.2090

    CAS  Article  Google Scholar 

  28. 28.

    Hosseinzadeh S, Ghalesefidi MJ, Azami M, Mohaghegh MA, Hejazi SH, Ghomashlooyan M (2016) In vitro and in vivo anthelmintic activity of seed extract of Coriandrum sativum compared to Niclosamid against Hymenolepis nana infection. J Parasit Dis 40:1307–1310. https://doi.org/10.1007/s12639-015-0676-y

    Article  PubMed  Google Scholar 

  29. 29.

    Hoste H, Martinez-Ortiz-De-Montellano C, Manolaraki F, Brunet S, Ojeda-Robertos N, Fourquaux I, Torres-Acosta JFJ, Sandoval-Castro CA (2012) Direct and indirect effects of bioactive tannin-rich tropical and temperate legumes against nematode infections. Vet Parasitol 186:18–27. https://doi.org/10.1016/j.vetpar.2011.11.042

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Hoste H, Torres-Acosta JF, Paolini V, Aguilar-Caballero A, Etter E, Lefrileux Y, Chartier C, Broqua C (2005) Interactions between nutrition and gastrointestinal infections with parasitic nematodes in goats. Small Rumin Res 60:141–151. https://doi.org/10.1016/j.smallrumres.2005.06.008

    Article  Google Scholar 

  31. 31.

    Hounzangbe-Adote MS, Paolini V, Fouraste I, Moutairou K, Hoste H (2005) In vitro effects of four tropical plants on three life-cycle stages of the parasitic nematode, Haemonchus contortus. Res Vet Sci 78:155–160. https://doi.org/10.1016/j.rvsc.2004.05.009

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Irum S, Ahmed H, Mukhtar M, Mushtaq M, Mirza B, Donskow-Lysoniewska K, Qayyum M, Simsek S (2015) Anthelmintic activity of Artemisia vestita Wall ex DC. and Artemisia maritima L. against Haemonchus contortus from sheep. Vet Parasitol 212:451–455. https://doi.org/10.1016/j.vetpar.2015.06.028

    Article  PubMed  Google Scholar 

  33. 33.

    Itoh A, Isoda K, Kondoh M, Kawase M, Kobayashi M, Tamesada M, Yagi K (2009) Hepatoprotective effect of syringic acid and vanillic acid on concanavalin a-induced liver injury. Biol Pharm Bull 32:1215–1219. https://doi.org/10.1248/bpb.32.1215

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Jabbar A, Iqbal Z, Kerboeuf D, Muhammad G, Khan MN, Afaq M (2006) Anthelmintic resistance: the state of play revisited. Life Sci 79:2413–2431. https://doi.org/10.1016/j.lfs.2006.08.010

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Kamkar A, Javan AJ, Asadi F, Kamalinejad M (2010) The antioxidative effect of Iranian Mentha pulegium extracts and essential oil in sunflower oil. Food Chem Toxicol 48:1796–1800. https://doi.org/10.1016/j.fct.2010.04.003

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Klongsiriwet C, Quijada J, Williams AR, Mueller-Harvey I, Williamson EM, Hoste H (2015) Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. Int J Parasitol Drugs Drug Resist. 5:127–134. https://doi.org/10.1016/j.ijpddr.2015.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Lingua MS, Fabani MP, Wunderlin DA, Baroni MV (2016) From grape to wine: changes in phenolic composition and its influence on antioxidant activity. Food Chem 208:228–238. https://doi.org/10.1016/j.foodchem.2016.04.009

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Lowry O, Rosenbrough NJ, Farr AL, Randal JR (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–271

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Maggiore MA, Albanese AA, Gende LB, Eguaras MJ, Denegri GM, Elissondo MC (2012) Anthelmintic effect of Mentha spp. essential oils on Echinococcus granulosus protoscoleces and metacestodes. Parasitol Res 110:1103–1112. https://doi.org/10.1007/s00436-011-2595-x

    Article  PubMed  Google Scholar 

  40. 40.

    Manolaraki F, Sotiraki S, Stefanakis A, Skampardonis V, Volanis M, Hoste H (2010) Anthelmintic activity of some Mediterranean browse plants against parasitic nematodes. Parasitology 137:685–696. https://doi.org/10.1017/S0031182009991399

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Martínez-Ortíz-de-Montellano C, Arroyo-López C, Fourquaux I, Torres-Acosta JFJ, Sandoval-Castro CA, Hoste H (2013) Scanning electron microscopy of Haemonchus contortus exposed to tannin-rich plants under in vivo and in vitro conditions. Exp Parasitol 133:281–286. https://doi.org/10.1016/j.exppara.2012.11.024

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Mata AT, Proença C, Ferreira AR, Serralheiro MLM, Nogueira JMF, Araújo MEM (2007) Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food Chem 103:778–786. https://doi.org/10.1016/j.foodchem.2006.09.017

    CAS  Article  Google Scholar 

  43. 43.

    Muhammad Y, Umar AM, Mohammed H, Ahmed G, Gumel MA, Alhassan M (2017) Effect of crude methanol extract of Senna occidentalis on biomarkers of oxidative stress of wistar rats with experimental Trypanosoma congolense infection. J Pharmacogn Phytochem 6:2699–2705

    CAS  Google Scholar 

  44. 44.

    Newton SE, Munn EA (1999) The development of vaccines against gastrointestinal nematode parasites, particularly Haemonchus contortus. Parasitol Today 15:116–122

    CAS  Article  Google Scholar 

  45. 45.

    Nwosu U, Vargas M, Harder A, Keiser J (2011) Efficacy of the cyclooctadepsipeptide PF1022A against Heligmosomoides bakeri in vitro and in vivo. Parasitology 138:1193–1201. https://doi.org/10.1016/S0169-4758(99)01399-X

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Pavela R (2005) Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia 76:691–696. https://doi.org/10.1016/j.fitote.2005.06.001

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Perry BD, Randolph RF, McDermott JJ, Sones KR, Thornton PK (2002) Investing in Animal Health Research to Alleviate Poverty. International Livestock Research Institute (ILRI), Nairobi, Kenya, p 148

    Google Scholar 

  48. 48.

    Politi FAS, Souza-Júnior AA, Fantatto RR, Pietro RCLR, Barioni-Júnior W, Rabelo MD, Bizzo HR, Chagas AC, Furlan M (2018) Chemical composition and in vitro anthelmintic activity of extracts of Tagetes patula against a multidrug-resistant isolate of Haemonchus contortus. Chem Biodivers. 15:e1700507. https://doi.org/10.1002/cbdv.201700507

    CAS  Article  Google Scholar 

  49. 49.

    Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341. https://doi.org/10.1006/abio.1999.4019

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Qamar MF, Maqbool A, Ahmad N (2011) Economic losses due to haemonchosis in sheep and goats. Sci Intern 23:321–324

    Google Scholar 

  51. 51.

    Raza MA, Murtaza S, Bachaya HA, Dastager G, Hussain A (2009) Point prevalence of haemonchosis in sheep and goats slaughtered at Multan abattoir. J Anim Plant Sci 19:158–159

    Google Scholar 

  52. 52.

    Rhiouani H, El-Hilaly J, Israili ZH, Lyoussi B (2008) Acute and sub-chronic toxicity of an aqueous extract of the leaves of Herniaria glabra in rodents. J Ethnopharmacol 118:378–386. https://doi.org/10.1016/j.jep.2008.05.009

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Saini P, Gayen P, Nayak A, Kumar D, Mukherjee N, Pal BC, Babu SPS (2012) Effect of ferulic acid from Hibiscus mutabilis on filarial parasite Setaria cervi: molecular and biochemical approaches. Parasitol Int 61:520–531. https://doi.org/10.1016/j.parint.2012.04.002

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Saleh MA, Al-Salahy MB, Sanousi SA (2009) Oxidative stress in blood of camels (Camelus dromedaries) naturally infected with Trypanosoma evansi. Vet Parasitol 162:192–199. https://doi.org/10.1016/j.vetpar.2009.03.035

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Santos FO, de Lima HG, de Souza Santos NS, Serra TM, Uzeda RS, Reis IMA, Botura MB, Branco A, Batatinha MJM (2017) In vitro anthelmintic and cytotoxicity activities the Digitaria insularis (Poaceae). Vet Parasitol 245:48–54. https://doi.org/10.1016/j.vetpar.2017.08.007

    Article  PubMed  Google Scholar 

  56. 56.

    Satrija F, Nansen P, Murtini S, He S (1995) Anthelmintic activity of papaya latex against patent Heligmosomoides polygyrus infections in mice. J Ethnopharmacol 48:161–164. https://doi.org/10.1016/0378-8741(95)01298-R

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Sarin K, Kumar A, Prakash A, Sharma A (1993) Oxidative stress and antioxidant defense mechanism in Plasmodium vivax malaria before and after chloroquin treatment. J Malariol 30:127–133

    CAS  Google Scholar 

  58. 58.

    Serairi-Beji R, Aidi Wannes W, Hamdi A, Tej R, Ksouri R, Saidani-Tounsi M, Lachaal M, Karray-Bouraoui N (2018) Antioxidant and hepatoprotective effects of Asparagus albus leaves in carbon tetrachloride-induced liver injury rats. J Food Biochem 42:e12433. https://doi.org/10.1111/jfbc.12433

    CAS  Article  Google Scholar 

  59. 59.

    Shenawy EL, Nahla S, Soliman MF, Reyad SI (2008) The effect of antioxidant properties of aqueous garlic extract and Nigella sativa as anti-schistosomiasis agents in mice. Rev Inst Med Trop São Paulo 50:29–36. https://doi.org/10.1590/S0036-46652008000100007

    Article  PubMed  Google Scholar 

  60. 60.

    Sun B, Ricardo-da-Silva JM, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46:4267–4274. https://doi.org/10.1021/jf980366j

    CAS  Article  Google Scholar 

  61. 61.

    Wabo JP, Bilong CB, Mpoame M (2010) In vitro nematicidal activity of extracts of Canthium mannii (Rubiaceae), on different life-cycle stages of Heligmosomoides polygyrus (Nematoda, Heligmosomatidae). J Helminthol 84:156–165. https://doi.org/10.1017/S0022149X09990435

    Article  Google Scholar 

  62. 62.

    Wabo-Pone J, Mbida M, Bilong CF (2009) In vivo evaluation of potential nematicidal properties of ethanol extract of Canthium mannii (Rubiaceae) on Heligmosomoides polygyrus parasite of rodents. Vet Parasitol 166:103–107. https://doi.org/10.1016/j.vetpar.2009.07.048

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Wagil M, Bialk-Bielińska A, Puckowski A, Wychodnik K, Maszkowska J, Mulkiewicz E, Kumirska J, Stepnowski P, Stolte S (2015) Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms. Environ Sci Pollut Res. 22:2566–2573. https://doi.org/10.1007/s11356-014-3497-0

    CAS  Article  Google Scholar 

  64. 64.

    Waller PJ (1997) Sustainable helminth control of ruminants in developing countries. Vet Parasitol 71:195–207. https://doi.org/10.1016/S0304-4017(97)00032-0

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Wang Y, Tang C, Zhang H (2015) Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice. J Food Drug Anal 23:310–317. https://doi.org/10.1016/j.jfda.2014.10.002

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276(5309):122–126. https://doi.org/10.1126/science.276.5309.122

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Yondo J, Komtangi M-C, Wabo JP, Bilong CB, Kuiate J-R, Mpoame M (2013) Nematicidal efficacy of methanol/methylene chloride extract of Rauwolfia vomitoria (Apocynacae) on Heligmosomoides bakeri (Nematoda, Heligmosomatidae) parasite of the white mouse (Mus musculus). J Med Plants Res 7:3220–3225. https://doi.org/10.5897/JMPR2013.5160

    Article  Google Scholar 

Download references

Acknowledgements

This study received financial support by “Laboratoire d’Epidémiologie d’Infections Enzootiques des Herbivores en Tunisie” (Ministère de l’enseignement supérieur, Tunisia). We are grateful to Mr Limam Sassi, Mr Mohamed Jedidi, and Mr Tawfik Lahmar for their valuable technical assistance. This article is based upon work from COST Action COMBAR CA16230, supported by COST (European Cooperation in Science and Technology).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Essia Sebai.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in relation to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sebai, E., Serairi, R., Saratsi, K. et al. Hydro-Ethanolic Extract of Mentha pulegium Exhibit Anthelmintic and Antioxidant Proprieties In Vitro and In Vivo. Acta Parasit. 65, 375–387 (2020). https://doi.org/10.2478/s11686-020-00169-3

Download citation

Keywords

  • Mentha pulegium
  • Anthelmintic
  • Heligmosomoides polygyrus
  • Haemonchus contortus
  • Antioxidant