Phylogenetic Relationships of Cardiocephaloides spp. (Digenea, Diplostomoidea) and the Genetic Characterization of Cardiocephaloides physalis from Magellanic Penguin, Spheniscus magellanicus, in Chile

Abstract

Purpose

Cardiocephaloides is a small genus of strigeid digeneans with an essentially cosmopolitan distribution. Most members of Cardiocephaloides are found in larid birds, however, Cardiocephaloides physalis is an exception and parasitizes penguins in some coastal regions of South America and South Africa. No prior molecular phylogenetic studies have included DNA sequence data of C. physalis. Herein, we provide molecular phylogenetic analyses of Cardiocephaloides using DNA sequences from five species of these strigeids.

Methods

Adult Cardiocephaloides spp. were obtained from larid birds and penguins collected from 3 biogeographical realms (Palearctic, Nearctic and Neotropics). We have generated sequences of the complete ITS region and partial 28S gene of the nuclear ribosomal DNA, along with partial sequences of the mitochondrial CO1 gene for C. physalis, C. medioconiger and the type species of the genus, C. longicollis and used them for phylogenetic inference.

Results

Cardiocephaloides spp. appeared as a 100% supported clade in the phylogenetic tree based on 28S sequences. The position of C. physalis varied between the phylogenetic trees based on the relatively conservative 28S gene on one hand, and variable ITS1 and COI sequences on the other. Cardiocephaloides physalis was nested within the clade of Cardiocephaloides spp. in the 28S tree and appeared as the sister group to the remaining members of the genus in the ITS1 region and COI trees. We detected 0.4–1.6% interspecific divergence in 28S, 1.9–6.9% in the ITS region and 8.7–11.8% in CO1 sequences of Cardiocephaloides spp. Our 28S sequence of C. physalis from South America and a shorter sequence from Africa available in the GenBank were identical.

Conclusion

Cardiocephaloides as represented in the currently available dataset is monophyletic with C. physalis parasitism in penguins likely resulting from a secondary host-switching event. Identical 28S sequences of C. physalis from South America and Africa cautiously confirm the broad distribution of this species, although comparison of faster mutating genes (e. g., CO1) is recommended for a better substantiated conclusion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Niewiadomska K (2002) Family Strigeidae Railliet, 1919. In: Gibson DI, Jones A, Bray RA (eds) Keys to the Trematoda, vol 1. CAB International and The Natural History Museum, London, pp 231–241

    Google Scholar 

  2. 2.

    Sudarikov VE (1959) Order Strigeidida (La Rue, 1926) Sudarikov, 1959. Part 1. Morphological characteristics of strigeids and superfamily Strigeoidea Railliet, 1919. In: Skrjabin KI (ed) [Trematodes of animals and man] Osnovy Trematodologii 16:216–631 (in Russian)

  3. 3.

    Dubois G (1968) Synopsis des Strigeidae et des Diplostomatidae (Trematoda). Mémoires de la Société Neuchâteloise des Sciences Naturelles 10:1–258

    Google Scholar 

  4. 4.

    Dubois G (1970) Les fondements de la taxonomie des Strigeata La Rue (Trematoda: Strigeida). Rev Suisse Zool 77:663–685

    CAS  Article  Google Scholar 

  5. 5.

    Dubois G, Angel LM (1972) Strigeata (Trematoda) of Australian birds and mammals from the Helminthological Collection of the University of Adelaide. Trans R Soc S Aust 96:197–215

    Google Scholar 

  6. 6.

    Dubois G (1982) Répertoire des synonymes récents de genres et D’espéces de la superfamille des Strigeoidea Railliet, 1919 (Trematoda). Bulletin de la Société Neuchâteloise des Sciences Naturelles 105:163–183

    Google Scholar 

  7. 7.

    Lutz A (1926) Strigea physalis, n. sp., parasite de Spheniscus magellanicus (avec démonstration des parasites in situ et sur les préparations). Comptes Rendus des Séances de la Société de Biologie et de ses Filiales 96:475–476

    Google Scholar 

  8. 8.

    Díaz J, Cremonte F, Navone G (2010) Helminths of the Magellanic penguin, Spheniscus magellanicus (Sphenisciformes), during the breeding season in Patagonian coast, Chubut, Argentina. Comp Parasitol 77:172–177

    Article  Google Scholar 

  9. 9.

    Brandão M, Luque JL, Scholz T, Kostadinova A (2013) New records and descriptions of digeneans in the Magellanic penguin Spheniscus magellanicus (Aves: Sphenisciformes) on the coast of Brazil. Syst Parasitol 85:79–98

    Article  Google Scholar 

  10. 10.

    Fernández Í, Moraga R, Yáñez F, Mansilla M, Smith C, Campos V (2019) Gastrointestinal helminths of wild Humboldt penguins Spheniscus humboldti (Meyen, 1834) from the south-central coast of Chile. Lat Am J Aquat Res 47:206–211

    Article  Google Scholar 

  11. 11.

    González-Acuña D, Kinsella J, Lara J, Valenzuela-Dellarossa G (2008) Parásitos gastrointestinales en pingüino de Humboldt (Spheniscus humboldti) y pingüino de Magallanes (Spheniscus magellanicus) en las costas del centro y sur de Chile. Parasitología Latinoamericana 63:58–63

    Article  Google Scholar 

  12. 12.

    Angulo-Tisoc J, Quispe Huacho M, Tantalean Vidaurre M, Del Solar Velarde JM (2018) Helmintos en Pelecanus thagus y Spheniscus humboldti de la costa de Lima, Perú. Rev Investig Vet Peru 29:253–262

    Article  Google Scholar 

  13. 13.

    Randall RM, Bray RA (1983) Mortalities of jackass penguin Spheniscus demersus chicks caused by trematode worms Cardiocephaloides physalis. S Afr J Zool 18:45–46

    Google Scholar 

  14. 14.

    Horne EC, Bray RA, Bousfield B (2011) The presence of the trematodes Cardiocephaloides physalis and Renicola sloanei in the African Penguin Spheniscus demersus on the east coast of South Africa. Ostrich 82:157–160

    Article  Google Scholar 

  15. 15.

    Baer JG (1969) Un trématode parasite du cormoran Phalacrocorax bougainvillei (Less.) des Îles Guañape, Pérou. Parazitologicheskii Sbornik 24:7–15

    Google Scholar 

  16. 16.

    Tantalean VM, Sarmiento BL, Huiza PA (1992) Digeneos (Trematoda) del Peru. Boletin de Lima 80:47–84

    Google Scholar 

  17. 17.

    Lutz HL, Tkach VV, Weckstein JD (2017) Methods for specimen-based studies of avian symbionts. In: Webster M (ed) The role of collections in ornithology: the extended specimen. Studies in avian biology. CRC Press, Florida, pp 127–183

    Google Scholar 

  18. 18.

    Achatz TJ, Pulis EE, Junker K, Tran BT, Snyder SD, Tkach VV (2019) Molecular phylogeny of the Cyathocotylidae (Digenea, Diplostomoidea) necessitates systematic changes and reveals a history of host and environment switches. Zool Scr 48:545–556

    Article  Google Scholar 

  19. 19.

    Littlewood DTJ, Olson PD (2001) Small subunit rDNA and the platyhelminthes: signal, noise, conflict and compromise. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the Platyhelminthes. CRC Press, Florida, pp 262–278

    Google Scholar 

  20. 20.

    Snyder SD, Tkach VV (2007) Neosychnocotyle maggiae, n. gen., n. sp. (Platyhelminthes: Aspidogastrea) from Freshwater Turtles in Northern Australia. J Parasitol 93:399–403

    CAS  Article  Google Scholar 

  21. 21.

    Kudlai O, Kostadinova A, Pulis EE, Tkach VV (2015) A new species of Drepanocephalus Dietz, 1909 (Digenea: Echinostomatidae) from the double-crested cormorant Phalacrocorax auritus (Lesson) (Aves: Phalacrocoracidae) in North America. Syst Parasitol 90:221–230

    Article  Google Scholar 

  22. 22.

    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  Google Scholar 

  23. 23.

    Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  Article  Google Scholar 

  24. 24.

    Rambaut A (2016) Figtree (Version 1.4.3). https://tree.bio.ed.ac.uk/software/figtree/. Accessed 14 Mar 2019

  25. 25.

    Blasco-Costa I, Locke SA (2017) Life history, systematics and evolution of the Diplostomoidea Poirier, 1886: progress, promises and challenges emerging from molecular studies. Adv Parasitol 98:167–225

    Article  Google Scholar 

  26. 26.

    Hernández-Mena DI, García-Varela M, Pérez-Ponce de León G (2017) Filling the gaps in the classification of the Digenea Carus, 1863: systematic position of the Proterodiplostomidae Dubois, 1936 within the superfamily Diplostomoidea Poirier, 1886, inferred from nuclear and mitochondrial DNA sequences. Syst Parasitol 94:833–848

    Article  Google Scholar 

  27. 27.

    Achatz TJ, Pulis EE, Fecchio A, Schlosser IJ, Tkach VV (2019) Phylogenetic relationships, expanded diversity and distribution of Crassiphiala spp. (Digenea, Diplostomidae), agents of black spot disease in fish. Parasitol Res 118:2781–2787

    Article  Google Scholar 

  28. 28.

    Queiroz M, López-Hernández D, Locke SA, Pinto HA, Anjos LA (2020) Metacercariae of Heterodiplostomum lanceolatum (Trematoda: Proterodiplostomidae) found in Leptodactylus podicipinus (Anura: Leptodactylidae) from Brazil: a morphological, molecular and ecological study. J Helminthol 94:e66. https://doi.org/10.1017/S0022149X19000646

    Article  Google Scholar 

  29. 29.

    Gordy MA, Locke SA, Rawlings TA, Lapierre AR, Hanington PC (2017) Molecular and morphological evidence for nine species in North American Australapatemon (Sudarikov, 1959): a phylogeny expansion with description of the zygocercous Australapatemon mclaughlini n. sp. Parasitol Res 116:2181–2198

    Article  Google Scholar 

  30. 30.

    Achatz TJ, Curran SS, Patitucci KF, Fecchio A, Tkach VV (2019) Phylogenetic affinities of Uvulifer spp. (Digenea: Diplostomidae) in the Americas with description of two new species from Peruvian Amazon. J Parasitol 105:704–717

    Article  Google Scholar 

  31. 31.

    Galazzo DE, Dayanandan S, Marcogliese D, McLaughlin J (2002) Molecular systematics of some North American species of Diplostomum (Digenea) based on rDNA-sequence data and comparisons with European congeners. Can J Zool 80:2207–2217

    CAS  Article  Google Scholar 

  32. 32.

    López-Hernández D, Locke SA, Lane de Melo A, Rabelo ÉML, Pinto HA (2018) Molecular, morphological and experimental assessment of the life cycle of Posthodiplostomum nanum Dubois, 1937 (Trematoda: Diplostomidae) from Brazil, with phylogenetic evidence of the paraphyly of the genus Posthodiplostomum Dubois, 1936. Infect Genet Evol 63:95–103

    Article  Google Scholar 

  33. 33.

    López-Jiménez A, Pérez-Ponce de León G, García-Varela M (2018) Molecular data reveal high diversity of Uvulifer (Trematoda: Diplostomidae) in Middle America, with the description of a new species. J Helminthol 92:725–739

    Article  Google Scholar 

  34. 34.

    Locke SA, Van Dam AR, Caffara M, Pinto HA, López-Hernández D, Blanar CA (2018) Validity of the Diplostomoidea and Diplostomida (Digenea, Platyhelminthes) upheld in phylogenomic analysis. Int J Parasitol 48:1043–1059

    Article  Google Scholar 

  35. 35.

    Born-Torrijos A, Poulin R, Pérez-del-Olmo A, Culurgioni J, Raga JA, Holzer AS (2016) An optimised multi-host trematode life cycle: fishery discards enhance trophic parasite transmission to scavenging birds. Int J Parasitol 46:745–753

    Article  Google Scholar 

  36. 36.

    Hernández-Mena DI, García-Prieto L, García-Varela M (2014) Morphological and molecular differentiation of Parastrigea (Trematoda: Strigeidae) from Mexico, with the description of a new species. Parasitol Int 63:315–323

    Article  Google Scholar 

  37. 37.

    Blasco-Costa I, Poulin R, Presswell B (2017) Morphological description and molecular analyses of Tylodelphys sp. (Trematoda: Diplostomidae) newly recorded from the freshwater fish Gobiomorphus cotidianus (common bully) in New Zealand. J Helminthol 91:332–345

    CAS  Article  Google Scholar 

  38. 38.

    Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Moriarty Lemmon E, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–573

    CAS  Article  Google Scholar 

  39. 39.

    Subramanian S, Beans-Picón G, Swaminathan SK, Millar CD, Lambert DM (2013) Evidence for a recent origin of Penguins. Biol Lett 9:1–4

    Article  Google Scholar 

  40. 40.

    Fernandes BMM, Justo MCN, Cárdenas MQ, Cohen SC (2015) South American trematodes parasites of birds and mammals. Oficina de Livros, Rio de Janeiro

    Google Scholar 

  41. 41.

    Donald K, Spencer H (2016) Host and ecology both play a role in shaping distribution of digenean parasites of New Zealand whelks (Gastropoda: Buccinidae: Cominella). Parasitology 143:1143–1156

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Laboratory processing of specimens was supported by the Joe K. Neel Memorial Award and a research stipend from the Department of Biology, University of North Dakota to TJA. DGA thanks Roberto Fernández and Alejandra Silva from CONAF—Punta Arenas for their support of the studies investigation on the Magdalena Island.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vasyl V. Tkach.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Achatz, T.J., Pulis, E.E., González-Acuña, D. et al. Phylogenetic Relationships of Cardiocephaloides spp. (Digenea, Diplostomoidea) and the Genetic Characterization of Cardiocephaloides physalis from Magellanic Penguin, Spheniscus magellanicus, in Chile. Acta Parasit. 65, 525–534 (2020). https://doi.org/10.2478/s11686-019-00162-5

Download citation

Keywords

  • Strigeidae
  • Cardiocephaloides
  • Molecular phylogeny
  • Penguins