Skip to main content
Log in

The genomic survey of Tc1-like elements in the silkworm microsporidia Nosema bombycis

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Background

Microsporidia Nosema bombycis is the destructive pathogen in the production of sericulture. The Tc1/mariner elements belong to important component of DNA transposon.

Methods

The genomic data of N. bombycis and related Nosema species were screened to identify the Tc1-like elements and analyzed the phylogenetic relationship, based on bioinformational analysis. High-throughput data of transcriptomes and small RNAs were used to evaluate the expressed level and potential rasiRNAs for the Tc1-like elements of N. bombycis.

Results

Twelve complete Tc1-like elements belonging to DD34,E clade is confirmed in the whole genome of N. bombycis, and divided into two branches. Six of them are sole in N. bombycis and thereby would be the molecular marker to differentiate this species from others Nosema spp. Most of the elements have the transcriptional active and are the source of sRNAs.

Conclusion

Abundant Tc1-like elements in N. bombycis reflect the expansion of transposons for this genomic characters, comparing with others Nosema spp. The finding of distribution, phylogeny and potential functional activity for Tc1Nbs in N. bombycis will help understanding the role of the DNA transposon in genomic evolution of microsporidia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Louis MW, Charles RV (1998) Microsporidiosis: molecular and diagnostic aspects. Adv Parasitol 40:351–395. https://doi.org/10.1016/S0065-308X(08)60127-X

    Article  Google Scholar 

  2. Larsson JIR (1999) Identification of microsporidia. Acta Protozool 38:161–197

    Google Scholar 

  3. Vavra J, Lukes J (2013) Microsporidia and ‘the art of living together’. Adv Parasitol. https://doi.org/10.1016/B978-0-12-407706-5.00004-6

    Article  PubMed  Google Scholar 

  4. Cavalier-Smith T (1987) Eukaryotes with no mitochondria. Nature 326:332–333. https://doi.org/10.1038/326332a0

    Article  CAS  PubMed  Google Scholar 

  5. Hirt RP, Logsdon JM, Healy B, Dorey MW (1999) Microsporidia are related to fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci USA 96:580–585. https://doi.org/10.2307/46854

    Article  CAS  PubMed  Google Scholar 

  6. Flegel TW, Pasharawipas TA (1995) A proposal for typical eukaryotic meiosis in microsporidians. Revue Canadienne De Microbiologie 41(1):1–11. https://doi.org/10.1139/m95-001

    Article  CAS  Google Scholar 

  7. Keeling PJ (2003) Congruent evidence from (alpha)-tubulin and (beta)-tubulin gene phylogenies for A zygomycete origin of microsporidia. Fungal Genet Biol 38:298–309. https://doi.org/10.1016/S1087-1845(02)00537-6

    Article  CAS  PubMed  Google Scholar 

  8. Lee SC, Corradi N, Byrnes EJ III, Torres-Martinez S, Dietrich FS, Keeling PJ, Heitman J (2008) Microsporidia evolved from ancestral sexual fungi. Curr Biol 18:1675–1679. https://doi.org/10.1016/j.cub.2008.09.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bass D, Czech L, Williams B, Berney C, Dunthorn M, Mahé F, Torruella G, Stentiford G, Williams T (2018) Clarifying the relationships between microsporidia and cryptomycota. J Eukaryot Microbiol. https://doi.org/10.1111/jeu.12519

    Article  PubMed  PubMed Central  Google Scholar 

  10. Luco RF (2016) Retrotransposons jump into alternative-splicing regulation via a long noncoding RNA. Nat Struct Mol Biol 23(11):952–954. https://doi.org/10.1038/nsmb.3318

    Article  CAS  PubMed  Google Scholar 

  11. Jurka J, Kapitonov VV, Kohany O, Jurka MV (2007) Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet 8(1):241–259. https://doi.org/10.1146/annurev.genom.8.080706.092416

    Article  CAS  PubMed  Google Scholar 

  12. Plasterk RH, Izsvák Z, Ivics Z (1999) Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet Tig 15(8):326. https://doi.org/10.1016/S0168-9525(99)01777-1

    Article  CAS  PubMed  Google Scholar 

  13. Fernandezmedina RD, Granzotto A, Ribeiro JM, Caraeto CMA (2016) Transposition burst of mariner-like elements in the sequenced genome of Rhodnius prolixus. Insect Biochem Mol Biol 69:14–24. https://doi.org/10.1016/j.ibmb.2015.09.003

    Article  CAS  Google Scholar 

  14. Shao H, Tu Z (2001) Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics 159(3):1103–1115. https://doi.org/10.1023/A:1013367100865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Silva JC, Bastida F, Bidwell SL, Johnson PJ, Carlton JM (2005) A potentially functional mariner transposable element in the protist Trichomonas vaginalis. Mol Biol Evol 22(1):126–134. https://doi.org/10.1093/molbev/msh260

    Article  CAS  PubMed  Google Scholar 

  16. Yang GJ, Fattash I, Lee CN, Liu K, Cavinder B (2013) Birth of three stowaway-like MITE families via microhomology-mediated miniaturization of a Tc1/mariner element in the yellow fever mosquito. Genome Biol Evol 5:1937–1948. https://doi.org/10.1093/gbe/evt146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nguyen DH, Hermann Dorothée, Caruso A, Tastard E, Marchand J, Rouault JD, Denis F, Thiriet-Rupert S, Casse N, Morant-Manceau A (2014) First evidence of mariner-like transposons in the genome of the marine microalga Amphora acutiuscula (Bacillariophyta). Protist 165(5):730–744. https://doi.org/10.1016/j.protis.2014.08.003

    Article  CAS  PubMed  Google Scholar 

  18. Ramakrishnan M, Zhou M, Pan C, Hänninen H, Yrjälä K, Vinod KK, Tang D (2019) Affinities of terminal inverted repeats to DNA binding domain of transposase affect the transposition activity of bamboo Ppmar2 mariner-like element. Int J Mol Sci 20:3692. https://doi.org/10.3390/ijms20153692

    Article  CAS  PubMed Central  Google Scholar 

  19. Nageli KW (1857) Uber die neue Krankheit der Seidenraupe und verwandte Organismen. Bot Z 15:760–761

    Google Scholar 

  20. Pan G, Xu J, Li T, Xia Q, Liu SL, Zhang G, Li S, Li C, Liu H, Yang L, Liu T, Zhang X, Wu Z, Fan W, Dang X, Xiang H, Tao M, Li Y, Hu J, Li Z, Lin L, Luo J, Geng L, Wang L, Long M, Wan Y, He N, Zhang Z, Lu C, Keeling PJ, Wang J, Xiang Z, Zhou Z (2013) Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation. BMC Genomics 14:186. https://doi.org/10.1186/1471-2164-14-186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cornman RS, Chen YP, Schatz MC, Street C, Zhao Y, Desany B, Egholm M, Hutchison S, Pettis JS, Lipkin WI, Evans JD (2009) Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathog 5:e1000466. https://doi.org/10.1371/journal.ppat.1000466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parisot N, Pelin A, Gasc G, Polonais V, Belkorchia A, Panek J, Alaoui H, Biron DJG, Brasset E, Vaury C, Peyret P, Corradi N, Peyretaillade E, Lerat E (2014) Microsporidian genomes harbor a diverse array of transposable elements that demonstrate an ancestry of horizontal exchange with metazoans. Genome Biol Evol 6:2289–2300. https://doi.org/10.1093/gbe/evu178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu JS, Pan GQ, Fang L, Li J, Li T, Zhou ZY, Xiang ZH (2006) The varying microsporidian genome: existence of long-terminal repeat retrotransposon in domesticated silkworm parasite Nosema bombycis. Int J Parasitol 36:1049–1056. https://doi.org/10.1016/j.ijpara.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  24. Xiang H, Pan G, Zhang R, Xu JS, Li T, Li WL, Zhou ZY, Xiang ZH (2010) Natural selection maintains the transcribed LTR retrotransposons in Nosema bombycis. J Genet Genomics 37(5):305–314. https://doi.org/10.1016/s1673-8527(09)60048-5

    Article  CAS  PubMed  Google Scholar 

  25. Xu JS, Wang M, Zhang XY, Tang FH, Pan GQ, Zhou ZY (2010) Identification of NbME MITE families: potential molecular markers in the microsporidia Nosema bombycis. J Invertebr Pathol 103(1):48–52. https://doi.org/10.1016/j.jip.2009.10.011

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen LT, Schmidt HA, Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  27. Liu H, Li M, He X, Cai S, He X, Lu X (2016) Transcriptome sequencing and characterization of ungerminated and germinated spores of Nosema bombycis. Acta Biochimica et Biophysica Sinica 48(3):246–256. https://doi.org/10.1093/abbs/gmv140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Langmead B, Wilks C, Antonescu V, Charles R (2018) Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty648

    Article  PubMed  PubMed Central  Google Scholar 

  29. Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, Elst H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RHA, Hannon GJ, Draper BW, Ketting RF (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 129(1):69–82. https://doi.org/10.1016/j.cell.2007.03.026

    Article  CAS  PubMed  Google Scholar 

  30. Kawaoka S, Hayashi N, Katsuma S, Kishino H, Kohara Y, Mita K, Shimada T (2008) Bombyx small RNAs: genomic defense system against transposons in the silkworm. Bombyx mori. Insect Biochem Mol Biol 38(12):1058–1065. https://doi.org/10.1016/j.ibmb.2008.03.007

    Article  CAS  PubMed  Google Scholar 

  31. Aravin AA, Lagosquintana M, Yalcin A, Zavolan M, Marks DS, Snyder B, Gaasterland T, Meyer JM, Tuschl T (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5(2):337–350. https://doi.org/10.1016/S1534-5807(03)00228-4

    Article  CAS  PubMed  Google Scholar 

  32. Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju JY, Sheridan R, John B, Marks DD, Gaidatzis D, Sander C, Zavolan M, Tuschl T (2005) The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev 19:1288–1293. https://doi.org/10.1101/gad.1310605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heringer P, Dias GB, Kuhn GCS (2017) A horizontally transferred autonomous helitron became a full polydnavirus segment in Cotesia vestalis. Genes|Genomes|Genetics. https://doi.org/10.1534/g3.117.300280

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wallau G, Capy P, Loreto E, Hua-Van A (2014) Genomic landscape and evolutionary dynamics of mariner transposable elements within the Drosophila genus. BMC Genomics 15(1):727. https://doi.org/10.1186/1471-2164-15-727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chernyavskaya Y, Mudbhary R, Zhang C, Tokarz D, Jacob V, Gopinath S, Sun X, Wang S, Magnani E, Madakashira BP, Yoder JA, Hoshida Y, Sadler KC (2017) Loss of DNA methylation in zebrafish embryos activates retrotransposons to trigger antiviral signaling. Development. https://doi.org/10.1242/dev.147629

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brownlie JC, Whyard S (2004) CemaT1 is an active transposon within the Caenorhabditis elegans genome. Gene (Amsterdam) 338(1):55–64. https://doi.org/10.1016/j.gene.2004.05.011

    Article  CAS  Google Scholar 

  37. Ellis MJ, Trussler RS, Charles O, Haniford DB (2017) A transposon-derived small RNA regulates gene expression in Salmonella Typhimurium. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx094

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported by Natural Science Foundation Project of Chongqing Science and technology Commission (No. cstc2015jcyjA80020), and the earmarked fund for China Agriculture Research System (No. CARS-44-KXJ21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Zhang.

Ethics declarations

Ethical statement

Icertify that this manuscript is original and has not been published and will not be submitted elsewhere for publication while being considered by Acta Parasitologica. And the study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time. No data have been fabricated or manipulated (including images) to support your conclusions. No data, text, or theories by others are presented as if they were our own.

The submission has been received explicitly from all co-authors. And authors whose names appear on the submission have contributed sufficiently to the scientific work and, therefore, share collective responsibility and accountability for the results. Conflict of Interest: The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Tang, X., Lan, L. et al. The genomic survey of Tc1-like elements in the silkworm microsporidia Nosema bombycis. Acta Parasit. 65, 193–202 (2020). https://doi.org/10.2478/s11686-019-00153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11686-019-00153-6

Keywords

Navigation