Morphological and Molecular Characteristics of the Gastro-Intestinal Nematode Parasite Ascaridia columbae Infecting the Domestic Pigeon Columba livia domestica in Saudi Arabia

Abstract

Background

Parasitism is a complex problem that is often ignored in companion animals, including birds, unless it develops into a severe clinical disorder. The present study was, therefore, aimed to investigate the presence of the gastrointestinal nematode infecting the domestic pigeon and provide a complete morphological description and clarify its taxonomic position through phylogenetic analysis of the ITS1-5.8s-ITS2 rDNA gene region.

Materials and Methods

During the current study, a total of twenty-six domestic pigeons, Columba livia domestica, were collected and internal organs examined for helminth detection. Using light and scanning electron microscopy, the recovered parasite species are studied. In addition, the selected gene region was obtained and sequenced using appropriate primers that aid in the formation of the phylogenetic dendrogram for the recovered parasite species with others retrieved from GenBank.

Results

Morphological examination showed that this nematode parasite belongs to the Ascaridiidae family within the genus Ascaridia. The material was assigned to the previously described Ascaridia columbae by providing all the characteristic features as the presence of a mouth opening surrounded by three tri-lobed lips; each lip has two triangular teeth with a spoon-like structure, cephalic papillae and amphidal pores on lips surface, presence of lateral cuticular alae and pre-cloacal sucker, 10 pairs of caudal papillae, and two equal spicules in male worms. The morphological investigations of this species were supplemented by molecular analysis of ITS1-5.8s-ITS2 rDNA gene region. The data showed that the present A. coulmbae is deeply embedded in the Ascaridia genus with a 74–99% sequence similarity to other species in the Chromadorea class. Ascaridiidae appears as monophyly and represented as a sister group to Heterakidae. The ascaridiid species examined belong to the Ascaridia genus and displaced a close relationship with the previously described A. coulmbae (gb| KF147909.1, gb| AJ001509.1, gb| KC905082.1, gb| JQ995321.1, gb| JX624729.1) as putative sister taxa.

Conclusion

The present study revealed that the species Ascaridia is the first account of this genus as an endoparasite from the domestic pigeon inhabiting Saudi Arabia. Therefore, the combination of morphological and molecular studies helps to identify this species correctly and identified as Ascaridia columbae.

This is a preview of subscription content, access via your institution.

Figs. 1–19
Figs. 20–35
Fig. 36

References

  1. 1.

    Abdelqader A, Gauly M, Wollny CB, Abo-Shehada MN (2008) Prevalence and burden of gastrointestinal helminthes among local chickens, in northern Jordan. Prev Vet Med 85:17–22. https://doi.org/10.1016/j.prevetmed.2008.01.009

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Abdelqader A, Gauly M, Wollny CBA (2007) Response of two breeds of chickens to Ascaridia galli infections from two geographic sources. Vet Parasitol 145:176–180. https://doi.org/10.1016/j.vetpar.2006.11.004

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Ackert JE (1923) On the habitat of Ascaridia perspicillum (Rud). Anat Rec 26:101–104

    Google Scholar 

  4. 4.

    Ackert JE, Herrick CA (1928) Effects of the nematode Ascaridia lineata (Svhneider) on growing chickens. J Parasitol 15:1–13. https://doi.org/10.2307/3271596

    Article  Google Scholar 

  5. 5.

    Adang KL, Oniye SJ, Ezealor AU, Abdu PA, Ajanusi OJ (2008) Ectoparasites of domestic pigeon (Columba livia domestica Linnaeus) in Zaria, Nigeria. Res J Parasitol 3:79–84. https://doi.org/10.3923/jp.2008.79.84

    Article  Google Scholar 

  6. 6.

    Ahmad J, Tanveer S, Zargar BA (2013) In vitro anthelmintic activity of Mentha longifolia (L.) leaves against Ascaridia galli. Glob Vet 11(1):112–117. https://doi.org/10.5829/idosi.gv.2013.11.1.73177

    Article  Google Scholar 

  7. 7.

    Alrubaie AL (2015) Effect of alcoholic extract of Curcuma longa on Ascaridia infestation affecting chickens. Indian J Exp Biol 53:452–456

    PubMed  Google Scholar 

  8. 8.

    Anderson RC, Chabaud AG, Willmott S (2009) Keys to the nematode parasites of vertebrates (archival volume). CAB International, Wallingford

    Google Scholar 

  9. 9.

    Barus VL (1966) Parasitic nematodes of Birds in Czechoslovakia: Columbiformes, Piciformes, Falconiformes y Strigiformes. Folia Parasitol 13:7–27

    Google Scholar 

  10. 10.

    Basit T, Pervez K, Avais M, Rabbani I (2006) Prevelance and chemotherapy of nematodes infestation in wild and domestic pigeons and its effects on various blood components. J Anim Plant Sci 16:1–2

    Google Scholar 

  11. 11.

    Baylis HA (1920) On the classification of the Ascaridae. 1. The systematic value of certain characters of the alimentary canal. Parasitol 12:253–264. https://doi.org/10.1017/S0031182000014220

    Article  Google Scholar 

  12. 12.

    Bazh EKA (2013) Molecular characterization of Ascaridia galli infecting native chickens in Egypt. Parasitol Res 112:3223–3227. https://doi.org/10.1007/s00436-013-3498-9

    Article  PubMed  Google Scholar 

  13. 13.

    Begum NJ, Shaikh H (1987) Prevalence of helminth parasites of pigeons (Columba livia). Bangladesh Vet J 21:89–93

    Google Scholar 

  14. 14.

    Blome KL (1909) Ueber zwei neue Wurmspezies: trichosomum papillosum und Heterakis cylindrical. Ztschr F Vet Berlin 21:353–368

    Google Scholar 

  15. 15.

    Borghare AT, Bagde VP, Jalukar AD, Katre DD, Jumde PD, Maske DK, Bhangale GN (2009) Incidence of gastrointestinal parasitism of captive wild pigeon at Nagpur. Vet World 2(9):343

    Google Scholar 

  16. 16.

    Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revised. J Parasitol 83(4):575–583. https://doi.org/10.2307/3284227

    CAS  Article  Google Scholar 

  17. 17.

    Calnek BW (1997) Diseases of poultry, 10th edn. Iowa State University Press, Iowa

    Google Scholar 

  18. 18.

    Coleman A (2003) ITS2 is a double-edged tool for eukaryotic evolutionary comparisons. Trends Genet 19:370–375

    CAS  PubMed  Google Scholar 

  19. 19.

    Cram E (1927) Bird parasites of the nematode sub-order Strongylata, Ascaridata, and Spirorata. US Natl Mus Bull 240:1–465. https://doi.org/10.1016/S0168-9525(03)00118-5

    CAS  Article  Google Scholar 

  20. 20.

    Damerow G (1994) The chicken health handbook. Storey Publishing LLC, United States

    Google Scholar 

  21. 21.

    Darmawi D, Balqis U, Hambal M, Tiuria R, Priosoeryanto BP, Handharyani E (2012) The ability of immunoglobulin yolk recognized the antigen in the tissue of Ascaridia galli. Media Peternak 35(3):190–195. https://doi.org/10.5398/medpet.2012.35.3.190

    Article  Google Scholar 

  22. 22.

    de Magalhaes PS (1892) Notes d’helminthologie brésilienne (Deuxième note). Bull Soc Zool France 17:219–221

    Google Scholar 

  23. 23.

    Dehlawi MS (2007) The occurance of nematodes in the intestine of local (Baladi) chicken (Gallus gallus domesticus) in Jeddah Provience-Saudi Arabia. Sci J King Faisal Univ 8(2):61–71

    Google Scholar 

  24. 24.

    Dovc A, Zorman-Rojs O, Vergles RA, Bole-Hribovek V, Krapez U, Dobeic M (2004) Health status of free-living pigeons (Columba livia domestica) in the city of Ljubljana. Acta Vet Hung 52:219–226. https://doi.org/10.1556/AVet.52.2004.2.10

    Article  PubMed  Google Scholar 

  25. 25.

    Dujardin F (1845) Historie naturelle des helminths ou vers intestinaux. Librairie Encyclopédique de Roret, Paris

    Google Scholar 

  26. 26.

    Ekpo UF, Ogbooye AA, Oluwole AS, Takeet M (2010) A preliminary survey on the parasites of free range chicken in Abeokuta, Ogun State, Nigeria. Int J Agric Sci Environ Technol 9:2

    Google Scholar 

  27. 27.

    Engelmann JC, Rahmann S, Wolf M, Schultz J, Fritzilas E, Kneitz S, Dandekar T, Muller T (2009) Modeling cross-hybridization on phylogenetic DNA micro-arrays increases the detection power of closely related species. Mol Ecol Resour 9:83–93. https://doi.org/10.1111/j.1755-0998.2008.02199.x

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Eshetu Y, Mulualem E, Ibrahim H, Berhanu A, Aberra K (2001) Study of gastro-intestinal helminthes of scavenging chickens in four rural districts of Amhara. Rev Sci Tech 20(3):791–796. https://doi.org/10.20506/rst.20.3.1310

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Fafiński Z (1999) Pasożyty wewnętrzne gołębi sportowych. Magazyn Wet 6:81–82

    Google Scholar 

  30. 30.

    Fakae Paul A (2003) Rainy season period prevalence of helminthes in the domestic fowl (Gallus domesticus) in Nsukka Eastern Nigeria. Niger Vet J 24:21–27. https://doi.org/10.4314/nvj.v24i1.3432

    Article  Google Scholar 

  31. 31.

    Fedynich AM, Pence DB (1994) Helminth community structure and pattern in a migratory host (Anas platyrhynchos). Can J Zool 72:496–505

    Google Scholar 

  32. 32.

    Foronda P (2002) Estudio faunístico y sistemático de helmintos de aves de Canarias. PhD Thesis, Universidad de La Laguna

  33. 33.

    Gauly M, Duss C, Erhardt G (2007) Influence of Ascaridia galli infections and anthelmintic treatments on the behavior and social ranks of laying hens (Gallus gallus domesticus). Vet Parasitol 146:271–280. https://doi.org/10.1016/j.vetpar.2007.03.005

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Gmelin JF (1789) Systema naturae, vol 1, no 2, 13th edn. Delamo-llière, Lugduni, p 769

  35. 35.

    Gomes AP, Olifiers N, Santos MM, Simões Rde O, Maldonado Júnior A (2015) New records of three species of nematodes in Cerdocyon thous from the Brazilian Pantanal wetlands. Braz J Vet Parasitol Jaboticabal 24(3):324–330. https://doi.org/10.1590/S1984-29612015061

    CAS  Article  Google Scholar 

  36. 36.

    Gül A, Ozdal N, Deger S, Denizhan V (2009) Prevalence of coccidia and helminth species in domestic pigeons (Columba livia domestica) in Van. Yuzuncu vil Univ Vet Fak 20(2):45–48

    Google Scholar 

  37. 37.

    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98. https://doi.org/10.1021/bk-1999-0734.ch008

    CAS  Article  Google Scholar 

  38. 38.

    Hartwich G, Tscherner W (1979) Ascaridia platyceri n. sp. Eine neue Spulwurmart aus Papageien. Angew Parasitol 20:63–67

    CAS  PubMed  Google Scholar 

  39. 39.

    Hassanain MA, Abdel Rahman EH, Khalil FAM (2009) New scanning electron microscopy look of Ascaridia galli (Schrank, 1788) adult worm and its biological control. Res J Parasitol 4(4):94–104. https://doi.org/10.3923/jp.2009.94.104

    Article  Google Scholar 

  40. 40.

    Hassouni T, Belghyti D (2006) Distribution of gastrointestinal helminthes in local chickens farms in the Gharb region-Morocco. Parasitol Res 99:181–183. https://doi.org/10.1007/s00436-006-0145-8

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Herd RP, McNaught DJ (1975) Arrested development and the histotropic phase of Ascaridia galli in the chicken. Int J Parasitol 5(4):401–406. https://doi.org/10.1016/0020-7519(75)90005-3

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Ikeme M (1971) Effects of different levels of nutrition and continuing dosing of poultry with Ascaridia galli eggs on the subsequent development of parasite populations. Parasitol 63:233–250. https://doi.org/10.1017/S0031182000079555

    CAS  Article  Google Scholar 

  43. 43.

    Johnston TH (1912) Notes on some entozoa. Proc R Soc Qld 24:63–91

    Google Scholar 

  44. 44.

    Kaingu F, Kibor A, Shivairo R, Kutima H, Okeno T, Wayhenya R (2010) Prevalence of gastro-intestinal helminthes and coccidia in indigenous chicken from different agro-climatic zones in Kenya. Afr J Agric Res 5:458–462

    Google Scholar 

  45. 45.

    Kajerova V, Barus V, Literak I (2004) Nematodes from the genus Ascaridia parasitizing psittaciform birds: a review and determination key. Vet Med Czech 49:217–223. https://doi.org/10.17221/5698-VETMED

    Article  Google Scholar 

  46. 46.

    Kang S, Sultana T, Eom KS, Park YC, Soonthornpong N, Nadler SA, Park JK (2009) The mitochondrial genome sequence of Enterobius vermicularis (Nematoda: oxyurida)—an idiosyncratic gene order and phylogenetic information for chromadorean nematodes. Gene 429:87–97. https://doi.org/10.1016/j.gene.2008.09.011

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Kaufmann F, Das G, Sohnrey B, Gauly M (2011) Helminth infections in laying hens kept in organic free range systems in Germany. Livest Sci 141:182–187. https://doi.org/10.1016/j.livsci.2011.05.015

    Article  Google Scholar 

  48. 48.

    Khalil AI, Lashein GH, Morsy GH, Abd El-Mottaleb DI (2014) Oxyurids of wild and laboratory rodents from Egypt. Life Sci J 11(3):94–107

    Google Scholar 

  49. 49.

    Khezerpour A, Naem S (2013) Investigation on parasitic helminthes of gastrointestinal, liver and lung of domestic pigeons (Columba livia) in Urmia, Iran. Int J Livest Res 3(3):35–41

    Google Scholar 

  50. 50.

    Kim T, Kim J, Cho S, Min GS, Park C, Carreno RA, Nadler SA, Park JK (2014) Phylogeny of Rhigonematomorpha based on the complete mitochondrial genome of Rhigonema thysanophora (Nematoda: chromadorea). Zool Scr 43:289–303. https://doi.org/10.1111/zsc.12047

    Article  Google Scholar 

  51. 51.

    Kulisic Z (1989) Parasitical infection among pigeons (Columba livia) of different ages in the area of Belgrade. Acta Veterinaria (Beograd) 39:155–162

    Google Scholar 

  52. 52.

    Leiper RT (1908) An account of some helminthes contained in Dr. Wenyon’s collection from the Sudan. 3. Rep. Wellcome Research Lab., London, pp 187–199

  53. 53.

    Lin RQ, Liu GH, Zhang Y, D’Amelio S, Zhou DH, Yuan ZG, Zou FC, Song HQ, Zhu XQ (2012) Contracaecum rudolphii B: gene content, arrangement and composition of its complete mitochondrial genome compared with Anisakis simplex s.l. Exp Parasitol 130:135–140. https://doi.org/10.1016/j.exppara.2011.11.003

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Liu GH, Nadler SA, Liu SS, Podolska M, D’Amelio S, Shao R, Gasser RB, Zhu XQ (2016) Mitochondrial phylogenomics yields strongly supported hypotheses for Ascaridomorph nematodes. Sci Rep 6:39248. https://doi.org/10.1038/srep39248

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Liu GH, Shao R, Cai XQ, Li WW, Zhu XQ (2015) Gnathostoma spinigerum mitochondrial genome sequence: a novel gene arrangement and its phylogenetic position within the class Chromadorea. Sci Rep 5:12691. https://doi.org/10.1038/srep12691

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Liu GH, Shao R, Li JY, Zhou DH, Zhu XQ (2013) The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny. BMC Genom 14:414. https://doi.org/10.1186/1471-2164-14-414

    CAS  Article  Google Scholar 

  57. 57.

    Liu GH, Zhou DH, Zhao L, Xiong RC, Liang JY, Zhu XQ (2014) The complete mitochondrial genome of Toxascaris leonina: comparison with other closely related species and phylogenetic implications. Infect Genet Evol 21:329–333. https://doi.org/10.1016/j.meegid.2013.11.022

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Magwisha HB, Kassuku AA, Kyvsgaard NC, Permin A (2002) A comparison of the prevalence and burdens of helminth infections in growers and adult free-range chickens. Trop Anim Health Prod 34(3):205–214. https://doi.org/10.1023/A:1015278524559

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Marcos-Atxutegi C, Gandolfi B, Arangüena T, Sepúlveda R, Arévalo M, Simón F (2009) Antibody and inflammatory responses in laying hens with experimental primary infections of Ascaridia galli. Vet Parasitol 161:69–75. https://doi.org/10.1016/j.vetpar.2008.12.011

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Marques SMT, De Quadros RM, Da Saliva RM, Da Saliva CJ, Baldo M (2007) Parasites of pigeons (Columba livia) in urban areas of Lages, Southern Brazil. Parasitol Latinoam 62:183–187. https://doi.org/10.4067/S0717-77122007000200014

    Article  Google Scholar 

  61. 61.

    Mattiucci S, Cipriani P, Webb SC, Paoletti M, Marcer F, Bellisario B, Gibson DI, Nascetti G (2014) Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. sp. for A. simplex sp. C (Nematoda: Anisakidae). J Parasitol 100:199–214. https://doi.org/10.1645/12-120.1

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Matur B, Dawam N, Malann Y (2010) Gastrointestinal helmith parasites of local and exotic chickens slaughtered in Gwagwalada, Abuja (FCT), Nigeria. N Y Sci J 3(5):96–99

    Google Scholar 

  63. 63.

    Mclaughlin JD, Burt MDB (1979) Studies on the hymenolepid cestodes of water fowl from New Brunswick, Canada. Can J Zool 57:34–79. https://doi.org/10.1139/z79-006

    Article  Google Scholar 

  64. 64.

    Mejía-Madrid HH, Aguirre-Macedo ML (2011) Redescription and genetic characterization of Cucullanus dodsworthi (Nematoda: Cucullanidae) from the checkered puffer Sphoeroides testudineus (Pisces: Tetraodontiformes). J Parasitol 97:695–706. https://doi.org/10.1645/GE-2664.1

    Article  PubMed  Google Scholar 

  65. 65.

    Meldal BH, Debenham NJ, De Ley P, De Ley IT, Vanfleteren JR, Vierstraete AR, Bert W, Borgonie G, Moens T, Tyler PA, Austen MC, Blaxter ML, Rogers AD, Lambshead PJ (2007) An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol Phylogenet Evol 42:622–636

    CAS  PubMed  Google Scholar 

  66. 66.

    Mines JJ (1979) Ascaridia sprenti, a new species of nematode in Australian parrots. Int J Parasitol 9:371–379. https://doi.org/10.1016/0020-7519(79)90088-2

    Article  Google Scholar 

  67. 67.

    Mohammad HR, Saeid F, Ehsan NA, Mohammad MD, Hadi RS (2011) A survey of parasites of domestic pigeons (Columba livia domestica) in South Khorasan, Iran. Vet Res 4(1):18–23. https://doi.org/10.3923/vr.2011.18.23

    Article  Google Scholar 

  68. 68.

    Mpoame M, Agbede G (1995) The Gastrointestinal helminth infection of domestic fowl in Dschang, Western Cameroon. Rev Elev Med Vet Pays Trop 48:147–151

    CAS  PubMed  Google Scholar 

  69. 69.

    Msoffe PLM, Muhairwa AP, Chiwanga GH, Kassuku AA (2010) A study of ecto-and endo-parasites of domestic pigeons in Morogoro Municipality, Tanzania. Afr J Agric Res 5:264–267

    Google Scholar 

  70. 70.

    Mushi FZ, Binta MG, Chabo RG, Ndebele R, Panzirah R (2000) Parasites of domestic pigeons (Columba livia domestica) in sebele garborone, Botswana. J S Afr Vet Assoc 71:249–250

    CAS  PubMed  Google Scholar 

  71. 71.

    Nadler SA, Carreno RA, Mejia-Madrid H, Ullberg J, Pagan C, Houston R, Hugot JP (2007) Molecular phylogeny of clade III nematodes reveals multiple origins of tissue parasitism. Parasitology 134:1421–1442

    CAS  PubMed  Google Scholar 

  72. 72.

    Nadler SA, Hudspeth DS (1998) Ribosomal DNA and phylogeny of the Ascaridoidea (Nemata: Secernentea): implications for morphological evolution and classification. Mol Phylogenet Evol 10:221–236. https://doi.org/10.1006/mpev.1998.0514

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Nnadi PA, George SO (2010) A cross-sectional survey on parasites of chickens in selected villages in the sub humid zones of South-Eastern Nigeria. J Parasitol Res 10:1824. https://doi.org/10.1155/2010/141824

    Article  Google Scholar 

  74. 74.

    Park JK, Sultana T, Lee SH, Kang S, Kim HK, Min GS, Nadler SA (2011) Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences. BMC Genom 12:392. https://doi.org/10.1186/1471-2164-12-392

    CAS  Article  Google Scholar 

  75. 75.

    Park MH, Sim CJ, Baek J, Min GS (2007) Identification of genes suitable for DNA barcoding of morphologically indistinguishable Korean Halichondriidae sponges. Mol Cells 23:220–227

    CAS  PubMed  Google Scholar 

  76. 76.

    Patel PV, Patel AI, Sahu RK, Raju V (2000) Prevalence of gastrointestinal parasites in captive birds of Gujarat Zoos. Zoos Print J 15:295–296. https://doi.org/10.11609/JoTT.ZPJ.14.4.295-96

    Article  Google Scholar 

  77. 77.

    Pereira C (1933) Novo nematoide parasito de psitacideos. Rev Med Cirurg Brasil 41:7–10

    Google Scholar 

  78. 78.

    Permin A, Bisgaard M, Frandsen F, Pearman M, Nansen P, Kold J (1999) Prevalence of gastrointestinal helminths in different poultry production systems. Br Poult Sci 40:43943. https://doi.org/10.1080/00071669987179

    Article  Google Scholar 

  79. 79.

    Permin A, Hansen JW (1998) The epidemiology, diagnosis and control of poultry parasites. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  80. 80.

    Permin A, Ranvig H (2001) Genetic resistance to Ascaridia galli infections in chickens. Vet Parasitol 102:101–111. https://doi.org/10.1016/S0304-4017(01)00525-8

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Piasecki T (2006) Ocena stanu zdrowotnego gołębi miejskich w aspekcie zagrożenia zdrowia ludzi. Medycyna Wet 62:531–535

    Google Scholar 

  82. 82.

    Pinto RM, Vicente JJ, Noronha D, de Fàbio SP (1991) New records for the nematodes Ascaridia columbae (Gmelin) Travassos, Acuaria mayori Lent, Freitas and Proença and Aproctella stoddardi Cram in Brazilian birds, with redescription of the species. Revta Bras Zool 8:1–6. https://doi.org/10.1590/S0101-81751991000100001

    Article  Google Scholar 

  83. 83.

    Poulsen J, Permin A, Hindsbo O, Yelifari L, Nansen P, Boch P (2000) Prevalence distribution of gastro-intestinal helminthes and hemoparasites in young scavenging chickens in upper eastern region of Ghana, West Africa. Prev Vet Med 45(3):237–245

    CAS  PubMed  Google Scholar 

  84. 84.

    Ramadan H, Abou Znada NY (1992) Morphology and life history of Ascaridia galli in the domestic fowl that are raised in Jeddah. JKAU Sci 4:87–99

    Google Scholar 

  85. 85.

    Rao TB, Hafeez M (2006) Ascaridia columbae infection in a pigeon Columba livia. Zoos P J 21:2377. https://doi.org/10.11609/JoTT.ZPJ.1429.2377

    Article  Google Scholar 

  86. 86.

    Robbins KM, Ye W, Fletcher OJ (2011) Identification of Ascaridia numidae in Guinea Fowl (Numida meleagris) and association with elevated mortality. Avian Dis 55:151–154. https://doi.org/10.1637/9654-958711-DIGEST.1

    Article  PubMed  Google Scholar 

  87. 87.

    Ruff MD (1984) Nematodes and acanthocephalans. In: Hofstad MS, Barnes HJ, Calneck BW, Reeid WM, Yonder HW Jr (eds) Diseases of poultry. Iowa State University Press, Ames, pp 614–628

    Google Scholar 

  88. 88.

    Saha BK, Abdullah-Al-Hasan MD, Rahman MA, Hassan MDM, Begum N (2015) Comparative efficacy of neem leaves extract and levamisole against ascariasis in chicken. Int J Nat Soc Sci 2:43–48

    Google Scholar 

  89. 89.

    Salam ST (2015) Ascariasis in backyard chicken-prevalence, pathology and control. Int J Recent Sci Res 6(4):3361–3365

    Google Scholar 

  90. 90.

    Sari B, Bilgekaratepei Karatepei M, Kara M (2008) Parasites of domestic (Columba livia domestica) and wild (Columba livia livia) Pigeons in Nigde, Turkey. Bull Vet Inst Pulawy 52:551–554

    Google Scholar 

  91. 91.

    Sayyed PR, Bhatti M, Pardehi W, Ali MS (2000) Incidence of nematode parasites in commercial layers in swat. Pakistan Vet J 20(2):107–108

    Google Scholar 

  92. 92.

    Schneider AE (1866) Monographie der Nematoden, Berlin, p Xiii +357

  93. 93.

    Schwartz B (1925) Two new larval nematodes belonging to the genus Porrocaecum from mammals of the order Insectivora. Proc US Natl Mus 67(17):1–8. https://doi.org/10.5479/si.00963801.67-2589.1

    Article  Google Scholar 

  94. 94.

    Senlik B, Gulegen E, Akyol V (2005) Effect of age, sex and season on the prevalence and intensity of helminth infections in domestic pigeons (Columba livia) from Bursa Province, Turkey. Acta Vet Hung 53:449–456. https://doi.org/10.1556/AVet.53.2005.4.5

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Senthilvel K, Pillai K, Madhavan K (2005) Prevalence of helminth parasites in domestic pigeons in Thrissur. J Vet Parasitol 19(2):169–170

    Google Scholar 

  96. 96.

    Šnábel V, Utsuki D, Kato T, Sunaga F, Ooi HK, Gambetta B, Taira K (2014) Molecular identification of Heterakis spumosa obtained from brown rats (Rattus norvegicus) in Japan and its infectivity in experimental mice. Parasitol Res 113:3449–3455. https://doi.org/10.1007/s00436-014-4014-6

    Article  PubMed  Google Scholar 

  97. 97.

    Sonaiya EB (1990) The context and prospects for development of Small holder rural poultry production in Africa. In: Proc CTA int seminar on small holder rural poultry production, Thessaloniki, vol 1, pp 35–52

  98. 98.

    Soota TD, Srivastava CB, Ghosh RK (1971) Studies on the helminth fauna of the Great Nicobar Island. Proc Ind Acad Sci 73:20–22. https://doi.org/10.1007/BF03045305

    Article  Google Scholar 

  99. 99.

    Soulsby EJL (1982) Helminths, arthropods and protozoa of domesticated animals, 7th edn. Bailliere Tindall, London, pp 164–175

    Google Scholar 

  100. 100.

    Špakulová M, Birová V (1990) Efficacy of the per-rectal transfer of postinvasive Heterakis spumosa developmental stages (Nematoda: Oxyurata). Helminthologia 27:125–133

    Google Scholar 

  101. 101.

    Stossich M (1902) Sopra aleuni nematodi delin eollezione elmintologiea del Prof. Dott. Corrado Parona, vol 116. Boll. Mus. di Zool., Genova, p 16

  102. 102.

    Stossich M (1904) Sopra aleuni nematodi. Ann Mus Zool DR Univ Napoli, NS 1:1–4

    Google Scholar 

  103. 103.

    Tarbiat B, Jansson DS, Höglund J (2015) Environmental tolerance of free-living stages of the poultry roundworm Ascaridia galli. Vet Parasitol 209:101–107. https://doi.org/10.1016/j.vetpar.2015.01.024

    Article  PubMed  Google Scholar 

  104. 104.

    Tesfahewet Z, Amare E, Hailu Z (2012) Helminthosis of chickens in selected small scale commercial poultry farms in and around Haramaya Woreda, Southeastern Ethiopia. Vet Ad 2:462–468. https://doi.org/10.5455/IJMRCR.diabetic-foot-amputation-growth-factors

    Article  Google Scholar 

  105. 105.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. https://doi.org/10.1093/nar/25.24.4876

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Threlfall W (1967) Studies on the helminth parasites of the herring gull, Larus argentatus Pontopp in northern Caernarvonshire and Anglesey. Parasitol 57:431–453. https://doi.org/10.1017/S0031182000072334

    CAS  Article  Google Scholar 

  107. 107.

    Travassos L (1913) Sobre as especies brazileiras da subfamilia Heterakinae Railliet and Henry. Institute Oswaldo Cruz, Rio de Janeiro, pp 1–33. https://doi.org/10.1590/S0074-02761913000300005

    Book  Google Scholar 

  108. 108.

    Trivedi S, Aloufi AA, Ansari AA, Ghosh SK (2015) Molecular phylogeny of oysters belonging to the genus Crassostrea through DNA barcoding. J Entomol Zool Stu 3(1):21–26

    Google Scholar 

  109. 109.

    Tsai SS, Hirai K, Itakura C (1992) Histopathological survey of protozoa, helminths and ascarids of imported and passerine local Psittacine and Birds in Japan. Jpn J Vet Res 40:161–174

    CAS  PubMed  Google Scholar 

  110. 110.

    Tugwell RL, Ackert JE (1952) On the tissue phase of the life cycle of the fowl nematode Ascaridia galli (Schrank). J Parasitol 4:277–288. https://doi.org/10.2307/3273760

    Article  Google Scholar 

  111. 111.

    Vilas R, Criscione CD, Blouin MS (2005) A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of Platyhelminth parasites. Parasitol 131(06):839–846. https://doi.org/10.1017/S0031182005008437

    CAS  Article  Google Scholar 

  112. 112.

    von Drasche R (1883) Revision der in der Nematoden-Sammlung des K. K. zoologischen Hofcabinets befindlichen Original-Exemplare Diesing’s und Molin’s. Zool Bot Gesellsch Wien 32:117–138

    Google Scholar 

  113. 113.

    von Linstow O (1879) Helminthologische Untersuchungen. Jahresb D Ver F Vaterl Naturk in Württemb Stuttgart 35:313–342

    Google Scholar 

  114. 114.

    von Linstow O (1884) Helminthologisches. Arch f Naturg Berlin 50:125–145

    Google Scholar 

  115. 115.

    von Linstow O (1898) Nemathelminthen gesammelt von Herrn Prof. Dr. F. Dahl in Bismarck-Archipel. Arch f Naturg Berlin 63:281–291

    Google Scholar 

  116. 116.

    von Linstow O (1899) Nematoden aus der Berliner zoologischen Sammlung. Mitt A D Zool Samml D Mus F Naturk Berlin 1:3–28. https://doi.org/10.1002/mmnz.4830010202

    Article  Google Scholar 

  117. 117.

    von Linstow O (1901) Helminthen von den Ufern des Nyassa-Sees, ein Beitrag zur Hel minthen-Fauna von Süd-Afrika. Jenaische Ztschr F Naturw Jena 35:409–428

    Google Scholar 

  118. 118.

    von Linstow O (1903) Parasitism, moistens Helminthen, Siam. Arch F Mikr Anat Bonn 62:108–121. https://doi.org/10.1007/BF02985541

    Article  Google Scholar 

  119. 119.

    von Linstow O (1904) Nematoda in the collection of the Colombo Museum. Spolia Zeylanica 1:91–104

    Google Scholar 

  120. 120.

    Wallace BM, Pence DB (1986) Population dynamics of the helminth community from migrating blue-winged teal: loss of helminths without replacement on the wintering grounds. Can J Zool 64:1765–1773. https://doi.org/10.1139/z86-266

    Article  Google Scholar 

  121. 121.

    Wang BJ, Gu XB, Yang GY, Wang T, Lai WM, Zhong ZJ, Liu GH (2016) Mitochondrial genomes of Heterakis gallinae and Heterakis beramporia support that they belong to the infraorder Ascaridomorpha. Infect Genet Evol 40:228–235. https://doi.org/10.1016/j.meegid.2016.03.012

    CAS  Article  PubMed  Google Scholar 

  122. 122.

    Wongsawad C, Wongsawad P (2010) Molecular markers for identification of Stellantchasmus falcatus and a phylogenic study using the HAT-RAPD method. Korean J Parasitol 48(4):303–307. https://doi.org/10.3347/kjp.2010.48.4.303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Zada L, Rehman T, Niaz S, Zeb MA, Ruqia B, Salma Khan MA, Khan A (2015) Prevalence of Ascaridia galli in some poultry farms of District Mardan. J Adv Parasitol 2(4):75–79. https://doi.org/10.14737/journal.jap/2015/2.4.75.79

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Researchers Supporting Project number (RSP-2019/25), King Saud University, Riyadh, Saudi Arabia.

Author information

Affiliations

Authors

Contributions

SAQ and RA-G participated in design, RA-G and KA carried out the laboratory work. RA-G, MAD, and KA participated in the interpretation of the results and the writing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rewaida Abdel-Gaber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al Quraishy, S., Abdel-Gaber, R., Dkhil, M.A. et al. Morphological and Molecular Characteristics of the Gastro-Intestinal Nematode Parasite Ascaridia columbae Infecting the Domestic Pigeon Columba livia domestica in Saudi Arabia. Acta Parasit. 65, 208–224 (2020). https://doi.org/10.2478/s11686-019-00151-8

Download citation

Keywords

  • Columba livia
  • Ascaridiidae
  • Ascaridia spp.
  • Morphology
  • Molecular analysis