Acta Parasitologica

, Volume 64, Issue 4, pp 745–752 | Cite as

Optimization of Immunization Procedure for Eimeria tenella DNA Vaccine pVAX1-pEtK2-IL-2 and Its Stability

  • Bucai Zhang
  • Cheng Yuan
  • Xiaokai Song
  • Lixin Xu
  • Ruofeng Yan
  • Muhammad Ali A. Shah
  • Changming Guo
  • Shanyuan Zhu
  • Xiangrui LiEmail author
Original Paper



To seek for the optimal immunization procedure of DNA vaccine pVAX1-pEtK2-IL-2 which was produced via cloning pEtK2 antigen gene of Eimeria tenella (E. tenella) and chicken IL-2 (chIL-2) gene into expression vector pVAX1.


The doses, routes, times of inoculation and ages of the first inoculation of chickens were optimized. The stability of the vaccine, including store temperature and time, was also explored. The effects of the protective immunity against challenge infection were assessed according to average body weight gain, survival rate, oocyst output, lesion score and the anti-coccidial index (ACI).


The results suggested that intramuscular inoculation was the most efficient route to elicit immune response and 80 μg was the optimal immune dose. Two time injections induced more effective protection compared to single injection, the effect of the first injection at 14 days old was optimal. The immune efficacy of the vaccine stored at different time and temperature was very stable.


The optimal immunization procedure for Eimeria tenella DNA vaccine pVAX1-pEtK2-IL-2 is 80 μg DNA, two time injections at 14 and 21 days old, respectively, by intramuscular inoculation.


E. tenella pEtK2 antigen DNA vaccine Immunization procedure Stability 



This work was supported by the Joint Research Project between National Natural Science Foundation of China and Pakistan Science Foundation (NSFC-PSF) (Grant no. 31661143017), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Colleges and Universities Nature Science Foundation of Jiangsu Province (17KJB230003) and the Qing Lan Project of Jiangsu Province (Grant no. 00000216049).


  1. 1.
    Barry MA, Johnston SA (1997) Biological features of genetic immunization. Vaccine 15(8):788–791. CrossRefPubMedGoogle Scholar
  2. 2.
    Brownlie R, Zhu J, Allan B, Mutwiri GK, Babiuk LA, Potter A et al (2009) Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. Mol Immunol 46:3163–3170. CrossRefPubMedGoogle Scholar
  3. 3.
    Chen Y, Lenert P, Weeratna R, McCluskie M, Wu T, Davis HL et al (2001) Identification of methylated CpG motifs as inhibitors of the immune stimulatory CpG motifs. Gene Ther 8:1024–1032. CrossRefPubMedGoogle Scholar
  4. 4.
    Cox GJ, Zamb TJ, Babiuk LA (1993) Bovine herpesvirus 1: immune responses in mice and cattle injected with plasmid DNA. J Virol 67:5664–5667PubMedPubMedCentralGoogle Scholar
  5. 5.
    Davis HL, McCluskie MJ, Gerin JL, Purcell RH (1996) DNA vaccine for hepatitis B: evidence for immunogenicity in chimpanzees and comparison with other vaccines. Proc Natl Acad Sci USA 93:7213–7218. CrossRefPubMedGoogle Scholar
  6. 6.
    Ding X, Lillehoj HS, Dalloul RA, Min W, Sato T, Yasuda A et al (2005) In ovo vaccination with the Eimeria tenella EtMIC2 gene induces protective immunity against coccidiosis. Vaccine 23:3733–3740. CrossRefPubMedGoogle Scholar
  7. 7.
    Dunn PP, Bumstead JM, Tomley FM (1996) Sequence, expression and localization of calmodulin-domain protein kinases in Eimeria tenella and Eimeria maxima. Parasitology 113(5):439–448. CrossRefPubMedGoogle Scholar
  8. 8.
    Elizabeth GR, Susana M, Javeed AS, Chang-you W, Joanna RK, Tara NT et al (2002) Vaccination with heat-killed leishmania antigen or recombinant leishmanial protein and CpG oligodeoxynucleotides induces long-term memory CD4+ and CD8+ T cell responses and protection against leishmania major infection. J Exp Med 195(12):1565–1573. CrossRefGoogle Scholar
  9. 9.
    Jiang Y, Yu K, Zhang H, Zhang P, Li C, Tian G et al (2007) Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector. Antiviral Res 75:234–241. CrossRefPubMedGoogle Scholar
  10. 10.
    Johnson J, Reid WM (1970) Anticoccidial drμgs: lesion scoring techniques in battery and floor-pen experiments with chickens. Exp Parasitol 28:30–36. CrossRefPubMedGoogle Scholar
  11. 11.
    Klinman DM, Yamshchikov G, Ishigatsubo Y (1997) Contribution of CpG motifs to the immunogenicity of DNA vaccines. J Immunol 158:3635–3639PubMedGoogle Scholar
  12. 12.
    Leitner WW, Seguin MC, Ballou WR, Seitz JP, Schultz AM, Sheehy MJ et al (1997) Immune responses induced by intramuscular or gene gun injection of protective deoxyribonucleic acid vaccines that express the circumsporozoite protein from Plasmodium berghei malaria parasites. J Immunol 159(12):6112–6119PubMedGoogle Scholar
  13. 13.
    Leitner WW, Ying H, Restifo NP (2000) DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 18(9):765–777. CrossRefGoogle Scholar
  14. 14.
    Li JR, Huang YW, Liang XY, Lu MJ, Li L, Yu L et al (2003) Plasmid DNA encoding antigens of infectious bursal disease viruses induce protective immune responses in chickens: factors influencing efficacy. Virus Res 98:63–74. CrossRefPubMedGoogle Scholar
  15. 15.
    Lillehoj HS (1998) Role of T lymphocytes and cytokines in coccidiosis. Int J Parasitol 28:1071–1081. CrossRefPubMedGoogle Scholar
  16. 16.
    Lillehoj HS, Ding X, Quiroz MA, Bevensee E, Lillehoj EP (2005) Resistance to intestinal coccidiosis following DNA immunization with the cloned 3-1E Eimeria gene plus IL-2, IL-15 and IFN-gamma. Avian 49(1):112–117CrossRefGoogle Scholar
  17. 17.
    Lim KL, Jazayeri SD, Yeap SK, Mohamed Alitheen NB, Bejo MH, Ideris A et al (2013) Antibody and T cell responses induced in chickens immunized with avian influenza virus N1 and NP DNA vaccine with chicken IL-15 and IL-18. Res Vet Sci 95:1224–1234. CrossRefPubMedGoogle Scholar
  18. 18.
    McManus EC, Campbell WC, Cuckler AC (1968) Development of resistance to quinoline coccidiostats under field and laboratory conditions. J Parasitol 54(6):1190–1193CrossRefGoogle Scholar
  19. 19.
    Meunier M, Chemaly M, Dory D (2016) DNA vaccination of poultry: the current status in 2015. Vaccine 34(2):202–211. CrossRefPubMedGoogle Scholar
  20. 20.
    R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  21. 21.
    Sato Y, Roman M, Tiqhe H, Lee D, Corr M, Nquyen MD et al (1996) Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273:352–354. CrossRefPubMedGoogle Scholar
  22. 22.
    Shirley MW, Smith AL, Tomley FM (2005) The biology of avian Eimeria with an emphasis on their control by vaccination. Adv Parasitol 60:285–330. CrossRefPubMedGoogle Scholar
  23. 23.
    Song KD, Lillehoj HS, Choi KD, Yun CH, Parcells MS, Huynh JT et al (2001) A DNA vaccine encoding a conserved Eimeria protein induces protective immunity against live Eimeria acervulina challenge. Vaccine 19:243–252. CrossRefGoogle Scholar
  24. 24.
    Song X, Xu L, Yan R, Huang X, Shah MA, Li X (2009) The optimal immunization procedure of DNA vaccine pcDNA-TA4-IL-2 of Eimeria tenella and its cross-immunity to Eimeria necatrix and Eimeria acervulina. Vet Parasitol 159:30–36. CrossRefPubMedGoogle Scholar
  25. 25.
    Song H, Yan R, Xu L, Song X, Shah MA, Zhu H, Li X (2010) Efficacy of DNA vaccines carrying Eimeria acervulina lactate dehydrogenase antigen gene against coccidiosis. Exp Parasitol 126:224–231. CrossRefPubMedGoogle Scholar
  26. 26.
    Song H, Qiu B, Yan R, Xu L, Song X, Li X (2013) The protective efficacy of chimeric SO7/IL-2 DNA vaccine against coccidiosis in chickens. Res Vet Sci 94(3):562–567. CrossRefPubMedGoogle Scholar
  27. 27.
    Song X, Ren Z, Yan R, Xu L, Li X (2015) Induction of protective immunity against Eimeria tenella, Eimeria necatrix, Eimeria maxima and Eimeria acervulina infections using multivalent epitope DNA vaccines. Vaccine 33:2764–2770. CrossRefPubMedGoogle Scholar
  28. 28.
    Song X, Zhao X, Xu L, Yan R, Li X (2017) Immune protection duration and efficacy stability of DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 against coccidiosis. Res Vet Sci 111:31–35. CrossRefPubMedGoogle Scholar
  29. 29.
    Suarez DL, Schultz-Cherry S (2000) The effect of eukaryotic expression vectors and adjuvants on DNA vaccines in chickens using an avian influenza model. Avian Dis 44:861–868. CrossRefPubMedGoogle Scholar
  30. 30.
    Tomley F (1997) Techniques for isolation and characterization of apical organelles from Eimeria tenella sporozoites. Methods 13:171–176. CrossRefPubMedGoogle Scholar
  31. 31.
    Wu SQ, Wang M, Liu Q, Zhu YJ, Suo X, Jiang JS (2004) Construction of DNA vaccines and their induced protective immunity against experimental Eimeria tenella infection. Parasitol Res 94(5):332–336. CrossRefPubMedGoogle Scholar
  32. 32.
    Xu J, Zhang Y, Tao J (2013) Efficacy of a DNA vaccine carrying Eimeria maxima Gam56 antigen gene against coccidiosis in chickens. Korean J Parasitol 51:147–154. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Xu Q, Song X, Xu L, Yan R, Shah MA, Li X (2008) Vaccination of chickens with a chimeric DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 induces protective immunity against coccidiosis. Vet Parasitol 156:319–323. CrossRefPubMedGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2019

Authors and Affiliations

  • Bucai Zhang
    • 1
    • 2
  • Cheng Yuan
    • 2
  • Xiaokai Song
    • 1
  • Lixin Xu
    • 1
  • Ruofeng Yan
    • 1
  • Muhammad Ali A. Shah
    • 3
  • Changming Guo
    • 2
  • Shanyuan Zhu
    • 2
  • Xiangrui Li
    • 1
    Email author
  1. 1.MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary MedicineNanjing Agricultural UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu Agri-animal Husbandry Vocational CollegeTaizhouPeople’s Republic of China
  3. 3.Department of PathobiologyPMAS Arid Agriculture UniversityRawalpindiPakistan

Personalised recommendations