Acta Parasitologica

, Volume 64, Issue 3, pp 544–550 | Cite as

Endohelminths of European Perch (Perca fluviatilis) from Selected Localities in Poland with an Emphasis on Search of the Broad Fish Tapeworm Dibothriocephalus latus

  • Alžbeta Radačovská
  • Eva Bazsalovicsová
  • Angelika Linowska
  • Marta Kołodziej-Sobocińska
  • Ivica Králová-HromadováEmail author
Original Paper



A piscivorous fish European perch (Perca fluviatilis) is present in all types of lakes and brackish waters in Poland. Previous ichthyoparasitological surveys revealed broad spectrum of endohelminths in perch from different aquatic environments. Among them, detection of Diphyllobothrium sp. and Dibothriocephalus latus (syn. Diphyllobothrium latum) in the Pomeranian Bay is of particular interest, since D. latus is one of the causative agents of diphyllobothriasis, fish-borne parasitic zoonosis. Besides, D. latus eggs were previously detected in coprological samples of otter, wolf and lynx from the Białowieża Primeval Forest.


To conduct parasitological examinations of European perch from the Pomeranian Bay in order to detect the spectrum of its endohelminths and to provide a pilot study on helminths of perch from different water bodies in the Białowieża Primeval Forest. Due to zoonotic character of D. latus, we have focused our attention to this tapeworm.


The larvae of tapeworm Triaenophorus nodulosus and thorny-headed worm Acanthocephalus lucii were detected in perch from the Pomeranian Bay. In perch from different localities in the Białowieża Primeval Forest, T. nodulosus, A. lucii and tapeworm Proteocephalus percae were detected. D. latus plerocercoids were found neither in musculature nor in peritoneal cavity and other internal organs of any of the fish examined from both studied localities in Poland.


Future screening implementing morphological and molecular markers is needed in order to understand the current distribution of D. latus in Europe.


European perch Endohelminths Diphyllobothriasis Fish-borne zoonosis 



The authors would like to acknowledge Prof. Eva Sobecka for help and assistance during field work. The work was financially supported by the Slovak Research and Development Agency under contract APVV-15-0004, Slovak Grant Agency VEGA no. 2/0134/17 and by the Research & Development Operational Program funded by the ERDF: Environmental protection against parasitozoonoses under the influence of global climate and social changes (code ITMS: 26220220116; 0.2).


  1. 1.
    Jamet JL (1994) Feeding activity of adult roach (Rutilus rutilus L.), perch (Perca fluviatilis L.) and ruffe (Gymnocephalus cernuus L.) in eutrophic Lake Aydat (France). Aquat Sci 56:376–387CrossRefGoogle Scholar
  2. 2.
    Lorenzoni M, Carosi A, Pedicillo G, Trusso A (2007) A comparative study on the feeding competition of the European perch Perca fluviatilis (L.) and the ruffe Gymnocephalus cernuus (L.) in Lake Piediluco (Umbria, Italy). Bull fr pêche piscic 387:35–57CrossRefGoogle Scholar
  3. 3.
    Langangen Ø, Edeline E, Ohlberger J, Winfield IJ, Fletcher JM, James JB, Stenseth NC, Vøllestad LA (2011) Six decades of pike and perch population dynamics in Windermere. Fish Res 109:131139. CrossRefGoogle Scholar
  4. 4.
    Popova OA, Sytina LA (1977) Food and feeding relations of Eurasian perch (Perca fluviatilis) and pikeperch (Stizostedion lucioperca) in various waters of the USSR. J Fish Res Board Can 34:15591570. CrossRefGoogle Scholar
  5. 5.
    Olsen JS (2002) Vækst, migration og reproduction hos en dansk population af Brakcandsaborre (Perca fluviatilis L.). Master’s thesis, University of CopenhagenGoogle Scholar
  6. 6.
    Thorpe J (1977) Synopsis of biological data on the perch Perca fluviatilis Linnaeus, 1758 and Perca flavescens Mitchill, 1814. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  7. 7.
    Ulićević J, Mrdak D, Talevski T, Milošević D (2018) Sexual dimorphism of European perch, Perca fluviatilis Linnaeus, 1758 from Lake Skadar (Montenegro) based on morphometric characters. Turk J Fish Aquat Sci 18:343–349. CrossRefGoogle Scholar
  8. 8.
    Welcomme RL (1988) International introduction of inland aquatic species. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  9. 9.
    Froese R, Pauly D (2012) FishBase. version (06/2012). Accessed 10 April 2019
  10. 10.
    Elvira B, Almodóvar A (2001) Freshwater fish introductions in Spain: facts and figures at the beginning of the 21st century. J Fish Biol 59:323–331. CrossRefGoogle Scholar
  11. 11.
    Freyhof J, Kottelat M (2008) Perca fluviatilis. The IUCN Red List of Threatened Species 2008: e. T16580A6135168. Accessed 10 April 2019
  12. 12.
    Vila-Gispert A, Alcaraz C, García-Berthou E (2005) Life-history traits of invasive fish in small Mediterranean streams. Biol Invasions 7:107–116. CrossRefGoogle Scholar
  13. 13.
    Lappalainen A, Rask M, Koponen H, Vesala S (2001) Relative abundance, diet and growth of perch (Perca fluviatilis) and roach (Rutilus rutilus) at Tvaerminne, northern Baltic sea, in 1975 and 1997: responses to eutrophication? Boreal Env Res 6:107–118Google Scholar
  14. 14.
    Snickars M, Sundblad G, Sandström A, Ljunggren L, Bergström U, Johansson G, Mattila J (2010) Habitat selectivity of substrate-spawning fish: modelling requirements for the Eurasian perch Perca fluviatilis. Mar Ecol Prog Ser 398:235–243. CrossRefGoogle Scholar
  15. 15.
    Ådjers K, Appelberg M, Eschbaum R, Lappalainen A, Minde A, Repečka R, Thoresson G (2006) Trends in coastal fish stocks of the Baltic sea. Boreal Environ Res 11:13–25Google Scholar
  16. 16.
    Nilsson J, Andersson J, Karas P, Sandstrom O (2004) Recruitment failure and decreasing catches of perch (Perca fluviatilis L.) and pike (Esox lucius L.) in the coastal waters of southeast Sweden. Boreal Env Res 9:295–306Google Scholar
  17. 17.
    Bielat I, Legierko M, Sobecka E (2015) Species richness and diversity of the parasites of two predatory fish species—perch (Perca fluviatilis Linnaeus, 1758) and zander (Sander lucioperca Linnaeus, 1758) from the Pomeranian Bay. Ann Parasitol 61:85–92PubMedGoogle Scholar
  18. 18.
    Wierzbicka J, Wierzbicki K, Piasecki W, Śmietana P (2005) A comparative study on the parasite fauna of perch, Perca fluviatilis L., collected from a freshwater coastal lake, brackish-water Baltic sea, and the interconnecting canal. Wiad Parazytol 51:295–302PubMedGoogle Scholar
  19. 19.
    Rolbiecki L (2003) Diversity of the parasite fauna of cyprinid (Cyprinidae) and percid (Percidae) fishes in the Vistula LAGOON, Poland. Wiad Parazytol 49:125–164PubMedGoogle Scholar
  20. 20.
    Sobecka E, Piasecki W (2002) Parasite fauna of Selected fish species of Lake Miedwie. Wiad Parazytol 48:207–215PubMedGoogle Scholar
  21. 21.
    Dzika E, Kuształa M, Kozłowski J (2008) Metazoan parasite fauna of fish species from Lake Kortowskie. Arch Fish Pol 16:75–86. CrossRefGoogle Scholar
  22. 22.
    Morozińska-Gogol J (2013) Parasite communities of European perch, Perca fluviatilis L. (Actinoprerygii: Perciformes: Percidae) from lake Łebsko (central coast, Poland). Ann Parasitol 59:89–98PubMedGoogle Scholar
  23. 23.
    Sobecka E, Słomińska M (2007) Species richness, diversity and specificity of the parasites of bream Abramis brama (L.) and perch Perca fluviatilis (L.) in the estuary of the Odra River, Poland. Helminthol 44:188–192. CrossRefGoogle Scholar
  24. 24.
    Morozińska-Gogol J (2007) Metazoan parasites of fish from the Łebsko lagoon (central coast, Poland). J Ecol Protect Coast 11:51–58Google Scholar
  25. 25.
    Franikowska H, Slugostowska T (2005) Występowanie kolcogłowów u okoni Perca fluviatilis L. z rzeki Długiej (Nizina Mazowiecka). Wiad Parazytol 51:35–38 (in Polish) PubMedGoogle Scholar
  26. 26.
    Waeschenbach A, Brabec J, Scholz T, Littlewood DTJ, Kuchta R (2017) The catholic taste of broad tapeworms—multiple routes to human infection. Int J Parasitol 47:831–843CrossRefGoogle Scholar
  27. 27.
    Gustinelli A, Menconi V, Prearo M, Caffara M, Righetti M, Scanzio T, Raglio A, Fioravanti ML (2016) Prevalence of Diphyllobothrium latum (Cestoda: Diphyllobothriidae) plerocercoids in fish species from four Italian lakes and risk for the consumers. Int J Food Microbiol 235:109–112. CrossRefPubMedGoogle Scholar
  28. 28.
    Kozicka J (1959) Parasites of fishes of Drużno lake. Acta Parasitol Pol 7:1–72Google Scholar
  29. 29.
    Górski P, Zalewski A, Łakomy M (2006) Parasites of carnivorous mammals in Białowieża Primeval Forest. Wiad Parazytol 52:49–53PubMedGoogle Scholar
  30. 30.
    Górski P, Zalewski A, Kazimierczak K, Kotomski G (2010) Coproscopical investigations of the European otter (Lutra lutra) from Białowieża Primeval Forest. Wiad Parazytol 56:179–180PubMedGoogle Scholar
  31. 31.
    Szczęsna J, Popiołek M, Schmidt K, Kowalczyk R (2008) Coprological study on helminth fauna in Eurasian lynx (Lynx lynx) from Białowieża Primeval Forest in eastern Poland. J Parasitol 94:981–984CrossRefGoogle Scholar
  32. 32.
    Littlewood DTJ, Olson PD (2001) Small subunit rDNA and the Platyhelminthes: signal, noise, conflict and compromise. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the Platyhelminthes. Taylor & Francis, New York, pp 262–278Google Scholar
  33. 33.
    Králová-Hromadová I, Štefka J, Špakulová M, Orosová M, Bombarová M, Hanzelová V, Bazsalovicsová E, Scholz T (2010) Intra-individual internal transcribed spacer 1 (ITS1) and ITS2 ribosomal sequence variation linked with multiple rDNA loci: a case of triploid Atractolytocestus huronensis, the monozoic cestode of common carp. Int J Parasitol 40:175–181. CrossRefPubMedGoogle Scholar
  34. 34.
    Werle E, Schneider C, Renner M, Volker M, Fiehn W (1994) Convenient single step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res 22:4354–4355CrossRefGoogle Scholar
  35. 35.
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Brabec J, Waeschenbach A, Scholz T, Littlewood DT, Kuchta R (2015) Molecular phylogeny of the Bothriocephalidea (Cestoda): molecular data challenge morphological classification. Int J Parasitol 45:761–771. CrossRefPubMedGoogle Scholar
  37. 37.
    Scholz T, de Chambrier A, Shimazu T, Ermolenko A, Waeschenbach A (2016) Proteocephalid tapeworms (Cestoda: Onchoproteocephalidea) of loaches (Cobitoidea): evidence for monophyly and high endemism of parasites in the Far East. Parasitol int 66(1):871–883. CrossRefPubMedGoogle Scholar
  38. 38.
    García-Varela M, Nadler SA (2005) Phylogenetic relationships of Palaeacanthocephala (Acanthocephala) inferred from SSU and LSU rDNA gene sequences. J Parasitol 91:1401–1409. CrossRefPubMedGoogle Scholar
  39. 39.
    Boniecka H, Cylkowska H, Dubrawski R, Gajecka A, Wandzel T (2008) Raport o oddziaływaniu na środowisko morskie przedsięwzięcia pod nazwą, usuwanie do morza urobku z pogłębiania akwenów związanych z budową falochronu osłonowego portu zewnętrznego w Świnoujściu”. Wydawnictwa Wewnętrzne Instytutu Morskiego, Gdańsk (in Polish) Google Scholar
  40. 40.
    Scholz T (1986) Observations on the ecology of five species of intestinal helminths in perch (Perca fluviatilis) from Mácha Lake fishpond system, Czechoslovakia. Věst Čs Společ Zool 50:300–320Google Scholar
  41. 41.
    Halvorsen O (1970) Studies of the helminth fauna of Norway XV: on the taxonomy and biology of plerocercoids of Diphyllobothrium Cobbold 1858 (Cestoda, Pseaudophyllidea) from north-western Europe. Nor J Zool 18:113–174Google Scholar
  42. 42.
    Prearo M, Pavoletti E, Gustinelli A, Caffara M, Righetti M, Bona MC, Scanzio T, Ru G, Fioravanti M (2013) Diphyllobothrium latum in Italy: plerocercoids larvae distribution in perch (Perca fluviatilis) fillets. Ital J Food Saf 2:3–4. CrossRefGoogle Scholar
  43. 43.
    Scholz T, Garcia H, Kuchta R, Wicht B (2009) Update on the human broad Tapeworm (genus Diphyllobothrium) including clinical relevance. Clin Microbiol Rev 22:146–160. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wahlberg MH (1998) The distribution of F-actin during the development of Diphyllobothrium dendriticum (Cestoda). Cell Tissue Res 291:561–570. CrossRefPubMedGoogle Scholar
  45. 45.
    Andersen K, Ching HL, Vik R (1987) A review of freshwater species of Diphyllobothrium with redescriptions and the distribution of D. dentriticum (Nitzsch, 1824) and D. ditremum (Creplin, 1825) from North America. Can J Zool 65:2216–2228. CrossRefGoogle Scholar
  46. 46.
    Andersen K, Gibson DI (1989) A key to three species of larval Diphyllobothrium Cobbold, 1858 (Cestoda: Pseudophyllidea) occurring in European and North American freshwater fishes. Syst Parasitol 13:3–9. CrossRefGoogle Scholar
  47. 47.
    Kuchta R, Scholz T, Brabec J, Narduzzi-Wicht B (2015) Diphyllobothrium, Diplogonoporus and Spirometra. In: Xiao L, Ryan U, Feng Y (eds) Biology of foodborne parasites. CRC Press, Boca Raton, Florida, pp 299–326Google Scholar
  48. 48.
    Wicht B, Yanagida T, Scholz T, Ito A, Jiménez JA, Brabec J (2010) Multiplex PCR for differential identification of broad tapeworms (Cestoda: Diphyllobothrium) infecting humans. J Clin Microbiol 48:3111–3116. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kołodziej-Sobocińska M, Tokarska M, Kowalczyk R (2014) The first report of sparganosis (Spirometra sp.) in Eurasian badger (Meles meles). Parasitol Int 63:397–399. CrossRefPubMedGoogle Scholar
  50. 50.
    Kołodziej-Sobocińska M, Miniuk M, Ruczyńska I, Tokarska M (2016) Sparganosis in wild boar (Sus scrofa)—implications for veterinarians, hunters, and consumers. Vet Parasitol 227:115–117. CrossRefPubMedGoogle Scholar
  51. 51.
    Kołodziej-Sobocińska MA, Miniuk M (2018) Sparganosis-neglected zoonosis and its reservoir in wildlife. Med Weter 74:224–227Google Scholar
  52. 52.
    Kołodziej-Sobocińska M, Yakovlev Y, Schmidt K, Hurníková Z, Ruczyńska I, Bednarski M, Tokarska M (2018) Update of the helminth fauna in Eurasian lynx (Lynx lynx) in Poland. Parasitol Res 117:2613–2621. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kondzior E, Tokarska M, Kowalczyk R, Ruczyńska I, Sobociński W, Kołodziej-Sobocińska M (2018) The first case of genetically confirmed sparganosis (Spirometra erinaceieuropaei) in European reptiles. Parasitol Res 117:3659–3662. CrossRefPubMedGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2019

Authors and Affiliations

  • Alžbeta Radačovská
    • 1
  • Eva Bazsalovicsová
    • 1
  • Angelika Linowska
    • 2
  • Marta Kołodziej-Sobocińska
    • 3
  • Ivica Králová-Hromadová
    • 1
    Email author
  1. 1.Institute of ParasitologySlovak Academy of SciencesKošiceSlovakia
  2. 2.Department of Hydrobiology, Ichthyology and Biotechnology of ReproductionWest Pomeranian University of TechnologySzczecinPoland
  3. 3.Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland

Personalised recommendations