Acta Parasitologica

, Volume 64, Issue 3, pp 652–657 | Cite as

Molecular and Morphological Characterization of Cysticercus tenuicollis in Red Deer (Cervus elaphus) from Turkey

  • Gorkem CengizEmail author
  • Gozde Yucel Tenekeci
  • Nuket Bilgen
Short Communication



Cysticercus tenuicollis, the metacestode stage of Taenia hydatigena has a worldwide distribution and is particularly common in rural areas and developing countries. In rare cases, T. hydatigena infection may result in the death of its host due to severe damage or secondary bacterial infections. Generally, when multiple cysts are attached to the liver, it causes economic losses. The infection can be detected using morphological, histopathological and more recently, molecular investigations.


In the present study, we describe molecular and morphological characterization of C. tenuicollis detected in a 3 month-old female red deer (Cervus elaphus) during necropsy. Cystic samples were stained with haematoxylin–eosin (HE) and Masson’s trichrome stain for histopathological examination, and molecular characterization of the complete mitochondrial cytochrome c oxidase subunit 1 (cox1) gene region was performed.


This study provides the first morphological, histopathological, and molecular data on C. tenuicollis isolated from red deer in Turkey.


mt-DNA Cox-1 Haplotype Taenia hydatigena 



This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Gomez-Puerta LA, Pacheco J, Gonzales-Viera O, Lopez-Urbina MT, Gonzalez AE, Peru Cysticercosis Working Group in (2015) The taruca (Hippocamelus antisensis) and the red brocket deer (Mazama americana) as intermediate hosts of Taenia hydatigena in Peru, morphological and molecular evidence. Vet Parasitol 212:465–468CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Zhao W, Yang D, Tian Y, Zhang W, Liu A (2018) Genetic characterization of three mitochondrial gene sequences of goat/sheep-derived Coenurus cerebralis and Cysticercus tenuicollis isolates in Inner Mongolia, China. Parasite 25:1–6CrossRefGoogle Scholar
  3. 3.
    Rostami SR, Salavati RN, Beech Z, Babaei M, Sharbatkhori MR, Baneshi E, Hajialilo H, Shad M, Harandi F (2015) Molecular and morphological characterization of the tapeworm Taenia hydatigena (Pallas 1766) in sheep from Iran. J Helminthol 89:150–157CrossRefGoogle Scholar
  4. 4.
    Singh BB, Sharma R, Gill JP, Sharma JK (2015) Prevalence and morphological characterisation of Cysticercus tenuicollis (Taenia hydatigena cysts) in sheep and goat from north India. J Parasit Dis 39:80–84CrossRefGoogle Scholar
  5. 5.
    Doganay A (2018) Helmintoloji, 1st edn. Ankara, Nobel Tıp KitabevleriGoogle Scholar
  6. 6.
    Boufana B, Scala A, Lahmar S, Pointing S, Craig PS, Dessi G, Zidda A, Pipia AP, Varcasia A (2015) A preliminary investigation into the genetic variation and population structure of Taenia hydatigena from Sardinia, Italy. Vet Parasitol 214:67–74CrossRefGoogle Scholar
  7. 7.
    Luo H, Zhang H, Li K, Rehman MU, Mehmood K, Lan Y, Huang S, Li J (2017) Epidemiological survey and phylogenetic characterization of Cysticercus tenuicollis isolated from Tibetan pigs in Tibet, China. Biomed Res Int 2017:7857253PubMedPubMedCentralGoogle Scholar
  8. 8.
    Omar MAE, Elmajdoub LO, Al-Aboody MS, Elsify AM, Elkhtam AO, Hussien AA (2016) Molecular characterization of Cysticercus tenuicollis of slaughtered livestock in Upper Egypt governorates. Asian Pac J Trop Biomed 6:706–708CrossRefGoogle Scholar
  9. 9.
    Lavikainen A, Haukisalmi V, Lehtinen MJ, Henttonen H, Oksanen A, Meri S (2008) A phylogeny of members of the family Taeniidae based on the mitochondrial cox1 and nad1 gene data. Parasitology 135:1457–1467CrossRefGoogle Scholar
  10. 10.
    Lavikainen A, Laaksonen S, Beckmen K, Oksanen A, Isomursu M, Meri S (2011) Molecular identification of Taenia spp. in wolves (Canis lupus), brown bears (Ursus arctos) and cervids from North Europe and Alaska. Parasitol Int 60:289–295CrossRefGoogle Scholar
  11. 11.
    Bolukbas CS, Gurler AT, Beyhan YE, Acici M, Umur S (2012) Helminths of roe deer (Capreolus capreolus) in the middle Black sea region of Turkey. Parasitol Int 61:729–730CrossRefGoogle Scholar
  12. 12.
    Huttner M, Nakao M, Wassermann T, Siefert I, Boomker JDF, Dinkel A, Sako Y, Mackenstedt U, Romig T, Ito A (2008) Genetic characterization and phylogenetic position of Echinococcus felidis Ortlepp 1937 (Cestoda: Taeniidae) from the African lion’. Int J Parasitol 38:861–868CrossRefGoogle Scholar
  13. 13.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series 41. [London]: Information Retrieval Ltd., c1979-c2000, pp 95–98Google Scholar
  14. 14.
    Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452CrossRefGoogle Scholar
  15. 15.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  16. 16.
    NCBI (2018) Accession link: Accessed 10 Dec 2018
  17. 17.
    Blazek K, Schramlova J, Hulinska D (1985) Pathology of the migration phase of Taenia hydatigena (Pallas 1766) larvae. Folia Parasitol 32:127–132PubMedGoogle Scholar
  18. 18.
    Cullen MC, Stalker MJ (2016) Liver and biliary system. In: Grant MM (ed) Jubb, Kennedy and Palmer’s pathology of domestic animal, vol 2. Elsevier, St. Louis, pp 473–474Google Scholar
  19. 19.
    Singh BB, Sharma R, Sharma JK, Mahajan V, Gill JPS (2016) Histopathological changes associated with E. granulosus echinococcosis in food producing animals in Punjab (India). J Parasit Dis 40(3):997–1000CrossRefGoogle Scholar
  20. 20.
    Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174CrossRefGoogle Scholar
  21. 21.
    Gemmell MA, Lawson JR, Roberts MG, Griffin JFT (1990) Population dynamics in Echinococcus and Cysticercosis: regulation of Taenia hydatigena and T. ovis in lambs through passively transferred immunity. Parasitology 101:145–151CrossRefGoogle Scholar
  22. 22.
    Deger S, Bicek K (2005) Larval Cestodiosis in sheep, goats and cattle slaughtered in Tatvan Abattoir. Van Vet J 16:45–47Google Scholar
  23. 23.
    Oge H, Kalinbacak F, Gicik Y, Yildiz K (1998) The prevalence of some metacestodes (Hydatid cyst, Cysticercus tenuicollis, Cysticercus bovis) in sheep, goat and cattle in slaughtered Ankara province. Vet J Ankara Univ 43:123–130Google Scholar
  24. 24.
    Sarimehmetoglu HO, Gonenc B, Piskin C, Ayaz E (1993) Prevalence of Cysticercus tenuicollis infection in sheep, goats, cattle and buffalos. Vet J Ankara Univ 40:488–496Google Scholar
  25. 25.
    Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285PubMedGoogle Scholar
  26. 26.
    Radfar MH, Tajalli S, Jalalzadeh M (2005) Prevalence and morphological characterization of Cysticercus tenuicollis (Taenia hydatigena cysticerci) from sheep and goats in Iran. Vet Arch 75(6):469–476Google Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Parasitology, Faculty of Veterinary MedicineUniversity of AnkaraAnkaraTurkey
  2. 2.Department of Pathology, Faculty of Veterinary MedicineUniversity of AnkaraAnkaraTurkey
  3. 3.Department of Animal Genetics, Faculty of Veterinary MedicineUniversity of AnkaraAnkaraTurkey

Personalised recommendations