Acta Parasitologica

, Volume 64, Issue 3, pp 489–500 | Cite as

Parasites of the Blue Antimora, Antimora rostrata and Slender Codling, Halargyreus johnsonii (Gadiformes: Moridae), in the Northwestern Atlantic

  • Ilya GordeevEmail author
  • Sergey Sokolov
  • Rafael Bañón
  • Xesús Morales
  • Alexei Orlov
Original Paper



The blue antimora, Antimora rostrata and slender codling, Halargyreus johnsonii (Gadoformes: Moridae) are common representatives of deep-water marine demersal fish fauna. This paper focuses on infections in blue antimora caught in the northwestern Atlantic region, but also reports observations on the parasites of slender codling obtained from a limited number of specimens from the same location.


Standard methods of parasitological examination, fixation and staining were used. In addition, a genetic analysis of the found acanthocephalans was performed to clarify their taxonomic affiliation.


Blue antimora is mostly infected by juveniles of Anisakis sp. and trematodes Lepidapedon sp. sensu Campbell & Bray, 1993. The trematode Lepidapedon cf. mariannae and nematodes Spinitectus oviflagellis, Fellicola sp., Hysterothylacium gadi gadi, and Capillaria cf. gracilis have been recorded from blue antimora for the first time. The slender codling has been newly recorded as a host of five parasite species: Steringophorus pritchardae; Plerurinae gen. sp.; Lepidapedon cf. mariannae; Ascarophis sp.; Anisakis sp., and Sphyrion lumpi.


Blue antimora and slender codling are recorded as hosts of 14 and 5 parasite taxa, respectively. The parasite fauna of these two species have similar patterns of infection to other bony fish that exist at a similar depth (800–2000) within the studied region.


Antimora rostrata Halargyreus johnsonii Parasites Infection North Atlantic Ocean 



The authors would like to thank the crew of RV Lance and FV Nuevo Malaga for their assistance with samplings. Special thanks go to Mrs. Irina Shirvel («RKF, Ltd.», Murmansk, Russia) for her help with the transportation of frozen samples from Vigo to Moscow. The research was supported by the Russian Science Foundation (Grant no. 17-74-10203). Specimens collection and transportation were supported by the Russian Foundation for Basic Research (Grant no. 16–04–00516).

Author contributions

IG—specimens dissection, parasite species identification, genetics, text preparation; SS—species identification, drawings, text preparation, RB—sampling, specimens transportation, XM—sampling, specimens transportation, AO—host species identification, advising, text preparation.

Compliance with Ethical Standards

Conflict of interest

Authors declare no conflict of interests.


  1. 1.
    Arthur JR, Albert E (1994) A survey of the parasites of Greenland halibut (Reinhardtius hippoglossoides) caught off Atlantic Canada, with notes on their zoogeography in this fish. Can J Zool 72:765–778. CrossRefGoogle Scholar
  2. 2.
    Bakay YI (1999) Parasites of the rockfish Sebastes in the North Atlantic. PhD thesis, Polar Research Institute of Marine Fisheries and OceanographyGoogle Scholar
  3. 3.
    Bray RA, Gibson DI (1995) The Lepocreadiidae (Digenea) of fishes from the north-east Atlantic: a review of the genus Lepidapedon Stafford, 1904. Syst Parasit 31:81–132. CrossRefGoogle Scholar
  4. 4.
    Bush AO, Lafferty KD, Lotz JM, Shostak AW et al (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasit 83:575–583. CrossRefPubMedGoogle Scholar
  5. 5.
    Busch MW, Kuhn T, Munster J, Klimpel S (2012) Marine crustaceans as potential hosts and vectors for metazoan parasites. In: Mehlhorn H (ed) Arthropods as vectors of emerging diseases. Springer Science & Business Media, Berlin, Heidelberg, pp 329–360CrossRefGoogle Scholar
  6. 6.
    Bykhovskaya-Pavlovskaya IE (1985) Parasites of fishes. Manual. Nauka, LeningradGoogle Scholar
  7. 7.
    Campbell RA, Bray RA (1993) Lepidapedon spp. (Digenea: Lepocreadiidae) from deep-sea gadiform fishes of the NW Atlantic Ocean, including four new species. Syst Parasit 24:99–110. CrossRefGoogle Scholar
  8. 8.
    Campbell RA, Haedrich RL, Munroe TA (1980) Parasitism and ecological relationships among deep-sea benthic fishes. Mar Biol 57:301–313CrossRefGoogle Scholar
  9. 9.
    Campbell RA, Munroe TA (1977) New hemiurid trematodes from deep-sea benthic fishes in the western North Atlantic. J Parasit 1977:285–294CrossRefGoogle Scholar
  10. 10.
    Chambers C (2008) Determining deep-sea fish community structure in the Arctic: using species assemblages, stomach contents, parasite infracommunities and stable isotopes to evaluate trophic interactions. Dissertation, University of ManitobaGoogle Scholar
  11. 11.
    Cohen DM (1973) The gadoid fish genus Halargyreus (family Eretmophoridae) in the southern hemisphere. J R Soc NZ 3:629–634. CrossRefGoogle Scholar
  12. 12.
    Cohen DM, Inada T, Iwamoto T, Scialabba N (1990) FAO species catalogue. Vol. 10. Gadiform fishes of the world (Order Gadiformes). In: An annotated and illustrated catalogue of cods, hakes, grenadiers and other gadiform fishes known to date. Fish. Synop. 125(10). FAO, RomeGoogle Scholar
  13. 13.
    Dallares S, Constenla M, Padros F, Cartes JE, Sole M, Carrasson M (2014) Parasites of the deep-sea fish Mora moro (Risso, 1810) from the NW Mediterranean Sea and relationship with fish diet and enzymatic biomarkers. Deep Sea Res Part I Oceanogr Res Papers 92:115–126. CrossRefGoogle Scholar
  14. 14.
    Fedorov VV, Chereshnev IA, Nazarkin MV, Shestakov AV, Volobuev VV (2003) Catalog of marine and freshwater fishes of the northern part of the Sea of Okhotsk. Dalnauka, VladivostokGoogle Scholar
  15. 15.
    Gaevskaya AV, Aljoshkina LD (1983) On the new findings of fish trematodes the Atlantic coast of Africa. Parazitologiya 17:12–17Google Scholar
  16. 16.
    Gordeev II, Sokolov SG, Orlov AM (2017) Macroparasites of blue hake Antimora rostrata and Pacific flatnose Antimora microlepis (Gadiformes, Moridae): current state of exploration. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki 159:468–479Google Scholar
  17. 17.
    Gordon JDM, Duncan JAR (1985) The biology of the fish of the family Moridae in the deep water of the Rockall trough. J Mar Biol Ass UK 65:475–485CrossRefGoogle Scholar
  18. 18.
    Houston KA, Haedrich RL (1986) Food habits and intestinal parasites of deep demersal fishes from the upper continental slope east of Newfoundland, northwest Atlantic Ocean. Mar Biol 92:563–574CrossRefGoogle Scholar
  19. 19.
    Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314. CrossRefPubMedGoogle Scholar
  20. 20.
    Inglis WG, Coles JW (1963) Miscellanea nematodologica III. Capillaria kabatai nov. sp. Zeitschrift für Parasitenkunde 22:518–520CrossRefGoogle Scholar
  21. 21.
    Ivanova NV, Dewaard JR, Hebert PD (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Res 6:998–1002. CrossRefGoogle Scholar
  22. 22.
    Iwamoto T (1975) The abyssal fish Antimora rostrata (Gunther). Comp Bioch Physiol 52:7–11Google Scholar
  23. 23.
    Jarecka L, Burt MDB (1984) The cercoid larvae of Pseudanthobothrium hanseni Baer, 1956 and Pseudanthobothrium sp. (Cestoda: Tetraphyllidea) from experimentally infected harpacticoid copepods. Acta Paras Pol 29:23–26Google Scholar
  24. 24.
    Kellermanns E, Klimpel S, Palm HW (2009) Parasite fauna of the Mediterranean grenadier Coryphaenoides mediterraneus (Giglioli, 1893) from the Mid-Atlantic Ridge (MAR). Acta Paras 54:158. CrossRefGoogle Scholar
  25. 25.
    Klimpel S, Seehagen A, Palm HW, Rosenthal H (2001) Deep-water metazoan fish parasites of the world. Logos, BerlinGoogle Scholar
  26. 26.
    Klimpel S, Busch MW, Kellermanns E, Kleinertz S, Palm HW (2009) Metazoan deep sea fish parasites. Natur & Wissenschaft, SolingenGoogle Scholar
  27. 27.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. CrossRefGoogle Scholar
  28. 28.
    Kuramochi T (2001) Digenean trematodes of anguilliform and gadiform fishes from deep-sea areas of Tosa Bay, Japan. In: Fujita T, Saito H, Takeda M (eds) Deep-sea fauna and pollutants in tosa bay. National Science Museum, Tokyo, pp 19–30Google Scholar
  29. 29.
    Kuramochi T (2009) Digenean trematodes of fishes from deep-sea areas off the Pacific coast of northern Honshu, Japan. In: Fujita T (ed) Deep-sea fauna and pollutants off Pacific Coast of Northern Japan. No. 39. National Museum of Nature and Science Monographs, Tokyo, pp 25 − 37Google Scholar
  30. 30.
    Littlewood DTJ, Curini-Galletti M, Herniou EA (2000) The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Mol Phyl Evol 16:449–466. CrossRefGoogle Scholar
  31. 31.
    Marcogliese DJ, Albert E, Gagnon P, Sévigny JM (2003) Use of parasites in stock identification of the deepwater redfish (Sebastes mentella) in the Northwest Atlantic. Fish Bull 101:183–188Google Scholar
  32. 32.
    Mauchline J, Gordon JDM (1984) Incidence of parasitic worms in stomachs of pelagic and demersal fish of the Rockall Trough, northeastern Atlantic Ocean. J Fish Biol 24:281–285. CrossRefGoogle Scholar
  33. 33.
    Moravec F (1987) Revision of capillariid nematodes (subfamily Capillariinae) parasitic in fishes. Stud CSAV 3:141Google Scholar
  34. 34.
    Moravec F (2001) Trichinelloid nematodes parasitic in cold-blooded vertebrates. Academia, PragueGoogle Scholar
  35. 35.
    Moravec F (2007) Some aspects of the taxonomy and biology of adult spirurine nematodes parasitic in fishes: a review. Folia Parasitol 54:239–257. CrossRefPubMedGoogle Scholar
  36. 36.
    Moravec F, Klimpel S (2007) New data on the morphology of Spinitectus oviflagellis Fourment, 1884 (Nematoda: Cystidicolidae) from the pyloric caeca of Macrourus berglax (Macrouridae) in the eastern Greenland Sea. Syst Paras 67:43–50. CrossRefGoogle Scholar
  37. 37.
    Ñacari LA, Oliva ME (2016) Metazoan parasites of deep-sea fishes from the South Eastern Pacific: exploring the role of ecology and host phylogeny. Deep Sea Res Part I Oceanogr Res Papers 115:123–130. CrossRefGoogle Scholar
  38. 38.
    Nikolaeva VM, Naidenova NN (1964) Nematodes of pelagic and bentho-pelagic fish of seas of the Mediterranean basin. Trudy Sevastop Biologicheskoy Stantsii 17:125–158Google Scholar
  39. 39.
    Novikov NP, Panov BN, Rebik ST, Timokhin IG (2010) Fishes of the open waters of the Indian Ocean. YugNIRO, KerchGoogle Scholar
  40. 40.
    Palm HW, Klimpel S (2008) Metazoan fish parasites of Macrourus berglax Lacepède, 1801 and other macrourids of the North Atlantic: invasion of the deep sea from the continental shelf. Deep Sea Res Part II Top Stud Oceanogr 55:236–242. CrossRefGoogle Scholar
  41. 41.
    Petter AJ, Køie M (1993) Fellicola longispiculus gen. nov., sp. nov. (Nematoda, Rhabdochonidae) from the gall bladder of the marine fish Coryphaenoides rupestris. Ann Parasitol Hum Comparée 68:226–228CrossRefGoogle Scholar
  42. 42.
    Ridoux V (1994) The diets and dietary segregation of seabirds at the Subantarctic Crozet. Mar Ornith 22:1–192Google Scholar
  43. 43.
    Rubec LA, Dronen NO (1994) Revision of the genus Diclidophora Krøyer, 1838 (Monogenea: Diclidophoridae), with the proposal of Macrouridophora ng. Syst Paras 28:159–185CrossRefGoogle Scholar
  44. 44.
    Savchenko AS, Kolbasov GA (2009) Serratotantulus chertoprudae gen. et sp. n. (Crustacea, Tantulocarida, Basipodellidae): a new tantulocaridan from the abyssal depths of the Indian Ocean. Integr Comp Biol 49:106–113. CrossRefPubMedGoogle Scholar
  45. 45.
    Scott JS (1987) Helminth parasites of the alimentary tract of the hakes (Merluccius, Urophycis, Phycis: Teleostei) of the Scotian Shelf. Can J Zool 65:304–311CrossRefGoogle Scholar
  46. 46.
    Sedberry GR, Musick JA (1978) Feeding strategies of some demersal fishes of the continental slope and rise off the mid-Atlantic coast of the USA. Mar Biol 44:357–375CrossRefGoogle Scholar
  47. 47.
    Small GJ (1981) A review of the bathyal fish genus Antimora (Moridae: Gadirformes). Proc Californ Acad Sci 42:341–348Google Scholar
  48. 48.
    Tinsley RC, Chappell LH (eds) (1999) Parasite adaptation to environmental constraints. Т. 119. Cambridge University Press, CambridgeGoogle Scholar
  49. 49.
    van der Land J, Costello MJ, Zavodnik D, Santos RS, Porteiro FM, Bailly N et al (2001) Pisces. In: Costello MJ, Emblow C, White RJ (eds) European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Muséum National d’Histoire Naturelle, Paris, pp 357–374Google Scholar
  50. 50.
    Walter T, Palm H, Piepiorka S, Ruckert S (2002) Parasites of the Antarctic rattail Macrourus whitsoni (Regan, 1913) (Macrouridae, Gadiformes). Pol Biol 25:633–640. CrossRefGoogle Scholar
  51. 51.
    Wayland MT, Vainio JK, Gibson DI, Herniou EA, Littlewood DTJ, Vainola R (2015) The systematics of Echinorhynchus Zoega in Müller, 1776 (Acanthocephala, Echinorhynchidae) elucidated by nuclear and mitochondrial sequence data from eight European taxa. ZooKeys 484:25. CrossRefGoogle Scholar
  52. 52.
    Wenner CA, Musick JA (1977) Biology of the morid fish Antimora rostrata in the Western North Atlantic. J Fish Res Board Can 34:2362–2368. CrossRefGoogle Scholar
  53. 53.
    Wierzbicka J (1991) Parasite fauna of the Greenland halibut, Reinhardtius hippoglossoides (Walbaum, 1792) from Labrador area. Acta Ichth Pisc 21:21–29CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2019

Authors and Affiliations

  1. 1.Russian Federal Research Institute of Fisheries and Oceanography (VNIRO)MoscowRussian Federation
  2. 2.Lomonosov Moscow State UniversityMoscowRussian Federation
  3. 3.Center of Parasitology of the Severtsov Institute of Ecology and Evolution of the RASMoscowRussian Federation
  4. 4.Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC)VigoSpain
  5. 5.Severtsov Institute of Ecology and Evolution of the RASMoscowRussian Federation
  6. 6.Dagestan State UniversityMakhachkalaRussian Federation
  7. 7.Tomsk State UniversityTomskRussian Federation

Personalised recommendations