Advertisement

Acta Parasitologica

, Volume 64, Issue 2, pp 367–375 | Cite as

Scolicidal Effects of Chitosan–Curcumin Nanoparticles on the Hydatid Cyst Protoscolices

  • Sara Napooni
  • Mahdi DelavariEmail author
  • Mohsen Arbabi
  • Hossein Barkheh
  • Sima Rasti
  • Hossein Hooshyar
  • S. Mostafa Hosseinpour Mashkani
Original Paper
  • 32 Downloads

Abstract

Purpose

In the current era, cystic echinococcosis (CE), as larval stage of Echinococcus granulosus, is considered as a threat to human health. Scolicidal agents used in the surgery of cysts have different side effects. Therefore, the present study aimed to assess the effects of chitosan nanoparticles containing curcumin (Ch–Cu NPs) on the protoscolices of the hydatid cyst in vitro.

Methods

Ch–Cu NPs were synthesized using a simple co-precipitation method and their structural and morphological properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), zeta analyzer, and Fourier transform infrared (FT-IR) spectroscopy. Then, the effects of different concentrations of Ch–Cu NPs (0.25, 0.05, 1, 2, and 4 mg/mL) on the fatality rate, and the length and width of protoscolices in different times (5, 10, 20, 30, and 60 min) were investigated. In addition, the SEM technique was used to evaluate the structure of the protoscolices after treatment.

Results

Based on the results, the presence of curcumin on the chitosan nanoparticles was confirmed by FT-IR analysis. Further, XRD analysis approved the crystal structure of chitosan NPs. Furthermore, the highest fatality rate was 68% in 4 mg/mL concentration of Ch–Cu NPs. The length and width of protoscolices decreased based on the high concentrations of Ch–Cu NPs, compared to the control group.

Conclusion

Finally, Ch–Cu NPs expressed good scolicidal activities, which made them suitable to be considered as an anti-protoscolex agent.

Keywords

Scolicidal effect Chitosan–curcumin nanoparticles Anti-protoscolex agent Hydatid cyst 

Notes

Acknowledgements

The Vice Chancellor for Research of Kashan University of Medical Sciences granted this study (project No., 94150).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Eckert J, Gemmell MA, Meslin F, Pawłowski ZS (2001) WHO/OIE manual on Echinococcosis in humans and animals: a public health problem of global concern. World Organization, Paris, p 265Google Scholar
  2. 2.
    Chalechale A, Hashemnia M, Rezaei F, Sayadpour M (2016) Echinococcus granulosus in humans associated with disease incidence in domestic animals in Kermanshah, west of Iran. J Parasit Dis 40:1322–1329.  https://doi.org/10.1007/s12639-015-0681-1 CrossRefPubMedGoogle Scholar
  3. 3.
    Kern P (2003) Echinococcus granulosus infection: clinical presentation, medical treatment and outcome, Langenbecks. Langenbeck’s Arch Surg 388:413–420.  https://doi.org/10.1007/s00423-003-0418-y CrossRefGoogle Scholar
  4. 4.
    Gavara CG, López-Andújar R, Ibáñez TB, Angel JMR, Herraiz AM, Castellanos FO, Ibars EP, Rodríguez FSJ (2015) Review of the treatment of liver hydatid cysts. World J Gastroenterol 7:124–131.  https://doi.org/10.3748/wjg.v21.i1.124 CrossRefGoogle Scholar
  5. 5.
    Rokni MM (2009) Echinococcosis/hydatidosis in Iran. Iran J Parasitol 4:1–16Google Scholar
  6. 6.
    Ezer A, Nursal TZR, Moray G, Yildirim S, Karakayali F, Noyan T, Haberal M (2006) Surgical treatment of liver hydatid cysts. HPB (Oxford) 8:38–42.  https://doi.org/10.1080/13651820500468000 CrossRefGoogle Scholar
  7. 7.
    WHO Informal Working Group on Echinococcosis (1996) Guidelines for treatment of cystic and alveolar echinococcosis. Bull World Health Org 74:231Google Scholar
  8. 8.
    Gupta R, Wadhawan S, Gupta R, Wadhawan S, Bhadoria P (2013) Intraoperative endobronchial rupture of pulmonary hydatid cyst: an airway catastrophe. J Anaesthesiol Clin Pharmacol 29:111–113.  https://doi.org/10.4103/0970-9185.105817 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sharafi SM, Sefiddashti RR, Sanei B, Yousefi M, Darani HY (2017) Scolicidal agents for protoscolices of Echinococcus granulosus hydatid cyst: review of literature. J Res Med Scis 16(22):92.  https://doi.org/10.4103/jrms.JRMS_1030_16 CrossRefGoogle Scholar
  10. 10.
    Albi A, Baudin F, Matmar M, Archambeau D (2002) Severe hypernatremia after hypertonic saline irrigation of hydatid cysts. Anesth Analg 95:1806–1808.  https://doi.org/10.1097/00000539-200212000-00062 CrossRefPubMedGoogle Scholar
  11. 11.
    Topcu O, Kuzu I, Karayalcin K (2006) Effects of peritoneal lavage with scolicidal agents on survival and adhesion formation in rats. World J Surg 30:127–133.  https://doi.org/10.1007/s00268-005-7960-4 CrossRefPubMedGoogle Scholar
  12. 12.
    Besim H, Karayalçin K, Hamamci O, Güngör C, Korkmaz A (1998) Scolicidal agents in hydatid cyst surgery. HPB Surg 10:347–351.  https://doi.org/10.1155/1998/78170 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rajabi MA (2009) Fatal reactions and methaemoglobinaemia after silver nitrate irrigation of hydatid cyst. Surg Pract 13:2–7.  https://doi.org/10.1111/j.1744-1633.2008.00427.x CrossRefGoogle Scholar
  14. 14.
    Sahin M, Eryilmaz R, Bulbuloglu E (2004) The effect of scolicidal agents on liver and biliary tree (experimental study). J Investig Surg 17(6):323–326.  https://doi.org/10.1080/08941930490524363 CrossRefGoogle Scholar
  15. 15.
    Horton RJ (1989) Chemotherapy of echinococcus infection in man with albendazole. Trans R Soc Trop Med Hyg 83:97–102CrossRefPubMedGoogle Scholar
  16. 16.
    Horton RJ (1997) Albendazole in treatment of human cystic echinococcosis: 12 years of experience. Acta Trop 64:79–93CrossRefPubMedGoogle Scholar
  17. 17.
    Shams-Ul-Bari Arif SH, Malik AA, Khaja AR, Dass TA, Naikoo ZA (2011) Role of albendazole in the management of hydatid cyst liver. Saudi J Gastroenterol 17:343–347.  https://doi.org/10.4103/1319-3767.84493 CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Rostami A, Taheri M, Gholizadeh M, Seyyedtabaei SJ, Saber Raeghi, Fallahi S (2016) Scolicidal effect of some herbs on Echinococcus granulosus protoscoleces : a systematic literature review. Herbal Med J 1:53–59Google Scholar
  19. 19.
    Priyadarsini KI (2014) The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19:20091–20112.  https://doi.org/10.1155/2013/982423.65 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Toda S, Miyase T, Arichi H, Tanizawa H, Takino Y (1985) Natural antioxidants.III, antioxidative components isolated from rhizome of Curcuma longa L. Chem Pharm Bull 33:1725–1728.  https://doi.org/10.1248/cpb.33.1725 CrossRefPubMedGoogle Scholar
  21. 21.
    Han SS, Keum YS, Seo HJ, Surh YJ (2002) Curcumin suppresses activation of NF-κB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol Res 35:337–342Google Scholar
  22. 22.
    Hosseinimehr SJ (2014) A review of preventive and therapeutic effects of curcumin in patients with cancer. Clin Excell 2:50–63Google Scholar
  23. 23.
    Ruby AJ, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R (1995) Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett 94:79–83.  https://doi.org/10.1016/0304-3835(95)03827 CrossRefPubMedGoogle Scholar
  24. 24.
    Koide T, Nose M, Ogihara Y, Yabu Y, Ohta N (2002) Leishmanicidal effect of curcumin in vitro. Biol Pharm Bull 25:131–133.  https://doi.org/10.1248/bpb.25.131 CrossRefPubMedGoogle Scholar
  25. 25.
    Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN (2005) Curcumin for malaria therapy. Biochem Biophys Res Commun 326:472–474.  https://doi.org/10.1016/j.bbrc.2004.11.051 CrossRefPubMedGoogle Scholar
  26. 26.
    Perez-Arriaga L, Mendoza-Magana ML, Cortes-Zarate R, Corona-Rivera A, Bobadilla-Morales L, Troyo-Sanromán R, Ramirez-Herrera MA (2006) Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Tropica 98:152–161.  https://doi.org/10.1016/j.actatropica.2006.03.005 CrossRefPubMedGoogle Scholar
  27. 27.
    Said DE, Elsamad LM, Gohar YM (2012) Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents. Parasitol Res 111:545–554.  https://doi.org/10.1007/s00436-012-2866-1 CrossRefPubMedGoogle Scholar
  28. 28.
    Nose M, Koide T, Ogihara Y, Yabu Y, Ohta N (1998) Trypanocidal effects of curcumin in vitro. Biol Pharm Bull 21:643–645.  https://doi.org/10.1248/bpb.21.643 CrossRefPubMedGoogle Scholar
  29. 29.
    Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78:2081–2087.  https://doi.org/10.1016/j.lfs.2005.12.007 CrossRefPubMedGoogle Scholar
  30. 30.
    Kamat V, Marathe I, Ghormade V, Bodas D, Paknikar K (2015) Synthesis of monodisperse chitosan nanoparticles and in situ drug loading using active microreactor. ACS Appl Mater Interfaces 7:22839–22847.  https://doi.org/10.1021/acsami.5b05100 CrossRefPubMedGoogle Scholar
  31. 31.
    Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohyd Res 339:2693–2700.  https://doi.org/10.1016/j.carres.2004.09.007 CrossRefGoogle Scholar
  32. 32.
    Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272.  https://doi.org/10.1080/08905439209549838 CrossRefGoogle Scholar
  33. 33.
    Hasegawa M, Yagi K, Iwakawa S, Hirai M (2001) Chitosan induces apoptosis via caspase-3 activation in bladder tumor cells. Jpn J Cancer Res 92:459–466.  https://doi.org/10.1111/j.1349-7006.2001.tb01116.x CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Qi LF, Xu ZR, Li Y, Jiang X, Han XY (2005) In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J Gastroenterol 11:5136.  https://doi.org/10.3748/wjg.v11.i33.5136 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tavassoli M, Imani A, Tajik H, Moradi M, Pourseyed SH (2012) Novel in vitro efficiency of chitosan biomolecule against Trichomonas gallinae. Iran J Parasitol 7:92PubMedPubMedCentralGoogle Scholar
  36. 36.
    Brown TJ, Emelko MB (2009) Chitosan and metal salt coagulant impacts on Cryptosporidium and microsphere removal by filtration. Water Res 43:331–338.  https://doi.org/10.1016/j.watres.2008.10.035 CrossRefPubMedGoogle Scholar
  37. 37.
    Gaafar MR, Mady RF, Diab RG, Shalaby TI (2014) Chitosan and silver nanoparticles: promising anti-toxoplasma agents. Exp Parasitol 143:30–38.  https://doi.org/10.1016/j.exppara.2014.05.005 CrossRefPubMedGoogle Scholar
  38. 38.
    Tripathy S, Mahapatra SK, Chattopadhyay S, Das S, Dash SK, Majumder S, Pramanik P, Roy S (2013) A novel chitosan based antimalarial drug delivery against Plasmodium berghei infection. Acta Trop 128:494–503.  https://doi.org/10.1016/j.actatropica.2013.07.011 CrossRefPubMedGoogle Scholar
  39. 39.
    Mofazzal Jahromi MA, Rajayi H, A-Musawi S, Pirestani M, Fasihi Ramandi M, Ahmadi K, Sharifzadeh Peivasti V, Mohammad Hassan Z, Kamali M, Mirnejad R (2015) Evaluation of antibacterial effect of curcumin loaded chitosan nanoparticles. J Fasa Univ Med Sci 5:134–141Google Scholar
  40. 40.
    Sharma D, Shukla R, Ali J, Sharma S, Bajpai P, Pathak N (2016) Phytochemical evaluation, antioxidant assay, antibacterial activity and determination of cell viability (J774 and THP1 alpha cell lines) of P. sylvestris leaf crude and methanol purified fractions. Exp Clin Sci 5:85–94.  https://doi.org/10.17179/excli2015-689 CrossRefGoogle Scholar
  41. 41.
    Moazeni M, Larki S, Saharkhiz MJ, Oryan A, Ansary Lari M, Mootabi Alavia A (2014) In vivo study of the efficacy of the aromatic water of Zataria multiflora on hydatid cysts. Antimicrob Agents Chemother 58:6003–6008.  https://doi.org/10.1128/AAC.02963-14 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kaewnopparat N, Kaewnopparat S, Jangwang A, Panichayupakaranant P (2009) Increased solubility, dissolution and physicochemical studies of Curcumin–Polyvinylpyrrolidone K-30 solid dispersions. World Acad Sci Eng Technol 31:137–142Google Scholar
  43. 43.
    Singh PK, Wani K, Kaul-Ghanekar R, Prabhune A, Ogale S (2014) From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Adv 4:60334–60341.  https://doi.org/10.1039/C4RA07300B CrossRefGoogle Scholar
  44. 44.
    Mandal S, Mandal MD (2012) Human cystic echinococcosis: epidemiologic, zoonotic, clinical, diagnostic and therapeutic aspects. Asian Pac J Trop Biomed 5:253–260.  https://doi.org/10.1016/S1995-7645(12)60035-2 CrossRefGoogle Scholar
  45. 45.
    Das RK, Kasoju N, Bora U (2010) Encapsulation of curcumin in alginate–chitosan–pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine 6:153.  https://doi.org/10.1016/j.nano.2009.05.009 CrossRefPubMedGoogle Scholar
  46. 46.
    Lashkarizadeh MR, Asgaripour K, Saedi Dezaki E, Fasihi Harandi M (2015) Comparison of scolicidal effects of amphotricin B, silver nanoparticles, and Foeniculum vulgare Mill on hydatid cysts protoscoleces. Iran J Parasitol 10:206–212PubMedPubMedCentralGoogle Scholar
  47. 47.
    Rahimi MT, Ahmadpour E, Rahimi Esboei B, Spotin A, Kohansal Koshki MH, Alizadeh A, Honary S, Barabadi H, Ali Mohammadi M (2015) Scolicidal activity of biosynthesized silver nanoparticles against Echinococcus granulosus protoscolices. Int J Surg 19:128–133CrossRefPubMedGoogle Scholar
  48. 48.
    Nematollahi, Shahbazi, Rafat A, Ghanbarlu M (2018) Comparative survey on scolicidal effects of selenium and silver nanoparticles on protoscolices of hydatid cyst. Open Vet J 8:374–377CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Napooni S, Arbabi M, Delavari M, Hooshyar H, Rasti S (2019) Lethal effects of gold nanoparticles on protoscolices of hydatid cyst: in vitro study. Comparat Clin Pathol 28:143–150CrossRefGoogle Scholar
  50. 50.
    Abdel-Baki AAS, Almalki E, Mansour L, Al-Quarishy S (2016) In vitro Scolicidal effects of Salvadora persica root extract against Protoscolices of Echinococcus granulosus. Korean J Parasitol 54:61–66CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Gholami SH, Rahimi-Esboei B, Ebrahimzadeh MA, Pourhajibagher M (2013) In vitro effect of Sambucusebulus on scolices of hydatid cysts. Eur Rev Med Pharmacol Sci 17:1760–1765PubMedGoogle Scholar
  52. 52.
    Haghani A, Roozitalab A, Safi SN (2014) Low scolicidal effect of Ocimum bacilicum and Allium cepa on protoccoleces of hydatid cyst: an in vitro study. Comparat Clin Pathol 23:847–853CrossRefGoogle Scholar
  53. 53.
    Mahmoudvand H, Sharififar F, Dezaki ES, Ezatpour B, Jahanbakhsh S, FasihiHarandi M (2014) Protoscolecidal effect of Berberis vulgaris root extract and its main compound, berberine in cystic echinococcosis. Iran J Parasitol 9:26–34Google Scholar
  54. 54.
    Moazeni M, Nazer A (2011) In vitro lethal effect of Zingiber officinale R. On protoscolices of hydatid cyst from sheep liver. Microbiol Res 2:91–94CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Medical Parasitology and Mycology, School of MedicineKashan University of Medical SciencesKashanIran
  2. 2.Department of Biophysics, Faculty of Biological ScienceTarbiat Modares UniversityTehranIran
  3. 3.Young Researchers and Elites Club, Arak BranchIslamic Azad UniversityArakIran

Personalised recommendations