Advertisement

Acta Parasitologica

, Volume 64, Issue 2, pp 360–366 | Cite as

Mitochondrial Gene Heterogeneity and Population Genetics of Haemaphysalis longicornis (Acari: Ixodidae) in China

  • Zhong-Bo Li
  • Yi-Tian Fu
  • Tian-Yin Cheng
  • Guo-Min Yao
  • Qiang-Hong Hou
  • Fen Li
  • Yu Zhao
  • Feng-Cai ZouEmail author
  • Guo-Hua LiuEmail author
Original Paper
  • 49 Downloads

Abstract

Introduction

Haemaphysalis longicornis is an important ectoparasite of domestic and wild animals that can transmit many pathogens including viruses, fungi, bacteria and protozoa.

Materials and methods

In this study, we examined genetic variation and population genetics in three mitochondrial (mt) genes [cox1 (cytochrome c subunit 1), rrnL (large subunit ribosomal RNA) and nad5 (NADH dehydrogenase 5)] among four H. longicornis populations from China.

Results

The sizes of the partial sequences of cox1, rrnL and nad5 were 776 bp, 409 bp, 510 bp, respectively. Among the obtained sequences, we identified 22 haplotypes for cox1, 2 haplotypes for rrnL and 17 haplotypes for nad5. Low gene flow and significant genetic differentiation (66.2%) were detected among H. longicornis populations. There was no rapid expansion event in the demographic history of four H. longicornis populations in China. In addition, phylogenetic analyses confirmed that all the Haemaphysalis isolates were H. longicornis which were segregated into two major clades.

Conclusion

The mt DNA genes provide a potential novel genetic marker for molecular epidemiology of H. longicornis and assist in the control of tick and tick-borne diseases in humans and animals.

Keywords

Haemaphysalis longicornis Genetic variation Mitochondrial DNA Phylogenetic analysis 

Notes

Acknowledgements

This work was supported in part by Scientific Research Fund of Hunan Provincial Education Department (No. 16A102), and the Training Program for Excellent Young Innovators of Changsha (Grant No. KQ1707005), and the National Natural Science Foundation of China (No. 31372431).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The performance of this study was strictly according to the recommendations of the Guide for the Care and Use of Laboratory Animals of the Ministry of Health, China, and our protocol was reviewed and approved by the Research Ethics Committee of Hunan Agricultural University.

References

  1. 1.
    Alsarraf M, Mierzejewska EJ, Mohallal EME, Behnke JM, Bajer A (2017) Genetic and phylogenetic analysis of the ticks from the Sinai Massif, Egypt, and their possible role in the transmission of Babesia behnkei. Exp Appl Acarol 72:415–427.  https://doi.org/10.1007/s10493-017-0164-4 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Amzati GS, Pelle R, Muhigwa JB, Kanduma EG, Djikeng A, Madder M, Kirschvink N, Marcotty T (2018) Mitochondrial phylogeography and population structure of the cattle tick Rhipicephalus appendiculatus in the African Great Lakes region. Parasites Vectors 11:329.  https://doi.org/10.1186/s13071-018-2904-7 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Benelli G, Duggan MF (2018) Management of arthropod vector data—social and ecological dynamics facing the One Health perspective. Acta Tropical 182:80–91.  https://doi.org/10.1016/j.actatropica.2018.02.015 CrossRefGoogle Scholar
  4. 4.
    Chao LL, Lu CW, Lin YF, Shih CM (2017) Molecular and morphological identification of a human biting tick, Amblyomma testudinarium (Acari: Ixodidae), in Taiwan. Exp Appl Acarol 71:401–414.  https://doi.org/10.1007/s10493-017-0119-9 CrossRefPubMedGoogle Scholar
  5. 5.
    Chitimia-Dobler L, Langguth J, Pfeffer M, Kattner S, Küpper T, Friese D (2017) Genetic analysis of Rhipicephalus sanguineus sensu lato ticks parasites of dogs in Africa north of the Sahara based on mitochondrial DNA sequences. Vet Parasitol 239:1–6.  https://doi.org/10.1016/j.vetpar.2017.04.012 CrossRefPubMedGoogle Scholar
  6. 6.
    Chitimia L, Lin RQ, Cosoroaba I, Wu XY, Song HQ, Yuan ZG (2010) Genetic characterization of ticks from southwestern Romania by sequences of mitochondrial cox1 and nad5 genes. Exp Appl Acarol 52:305–311.  https://doi.org/10.1007/s10493-010-9365-9 CrossRefPubMedGoogle Scholar
  7. 7.
    Chen Z, Yang X, Bu F, Yang X, Liu J (2012) Morphological, biological and molecular characteristics of bisexual and parthenogenetic Haemaphysalis longicornis. Vet Parasitol 189:344–352.  https://doi.org/10.1016/j.vetpar.2012.04.021 CrossRefPubMedGoogle Scholar
  8. 8.
    Chen Z, Li Y, Ren Q, Luo J, Liu Z, Zhou X (2014) Dermacentor everestianus Hirst, 1926 (Acari: Ixodidae): phylogenetic status inferred from molecular characteristics. Parasitol Res 113:3773–3779.  https://doi.org/10.1007/s00436-014-4043-1 CrossRefPubMedGoogle Scholar
  9. 9.
    Deng GF (1978) Economic insect fauna of China, vol 15. Science Press, Beijing, pp 1–174Google Scholar
  10. 10.
    Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567.  https://doi.org/10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  11. 11.
    Eamsobhana P, Song SL, Yong HS, Prasartvit A, Boonyong S, Tungtrongchitr A (2017) Cytochrome c oxidase subunit I haplotype diversity of Angiostrongylus cantonensis (Nematoda: Angiostrongylidae). Acta Tropical 171:141–145.  https://doi.org/10.1016/j.actatropica.2017.03.020 CrossRefGoogle Scholar
  12. 12.
    Feng X, Huang L, Lin L, Yang M, Ma Y (2017) Genetic diversity and population structure of the primary malaria vector Anopheles sinensis (Diptera: Culicidae) in China inferred by cox1 gene. Parasites Vectors 10:75.  https://doi.org/10.1186/s13071-017-2013-z CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Flanley CM, Ramalho-Ortigao M, Coutinho-Abreu IV, Mukbel R, Hanafi HA, El-Hossary SS (2018) Population genetics analysis of Phlebotomus papatasi sand flies from Egypt and Jordan based on mitochondrial cytochrome b haplotypes. Parasites Vectors 11:214.  https://doi.org/10.1186/s13071-018-2785-9 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Galtier N, Nabholz B, Glémin S, Hurst GD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:4541–4550.  https://doi.org/10.1111/j.1365-294X.2009.04380.x CrossRefPubMedGoogle Scholar
  15. 15.
    Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Pena A, Horak IG, Shao R, Barker SC (2010) The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: a list of valid species names. Zootaxa 2528:1–28CrossRefGoogle Scholar
  16. 16.
    Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321.  https://doi.org/10.1093/sysbio/syq010 CrossRefGoogle Scholar
  17. 17.
    Hernandez EP, Kusakisako K, Talactac MR, Galay RL, Hatta T, Matsuo T (2018) Characterization and expression analysis of a newly identified glutathione S-transferase of the hard tick Haemaphysalis longicornis during blood-feeding. Parasites Vectors 11:91.  https://doi.org/10.1186/s13071-018-2667-1 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hornok S, Sándor AD, Tomanović S, Beck R, D’Amico G, Kontschán J (2017) East and west separation of Rhipicephalus sanguineus mitochondrial lineages in the Mediterranean Basin. Parasites Vectors 10:39.  https://doi.org/10.1186/s13071-017-1985-z CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hekimoglu O, Ozer AN (2017) Distribution and phylogeny of Hyalomma ticks (Acari: Ixodidae) in Turkey. Exp Appl Acarol 73:501–519.  https://doi.org/10.1007/s10493-017-0192-0 CrossRefPubMedGoogle Scholar
  20. 20.
    Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780.  https://doi.org/10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kanduma EG, Mwacharo JM, Githaka NW, Kinyanjui PW, Njuguna JN, Kamau LM (2016) Analyses of mitochondrial genes reveal two sympatric but genetically divergent lineages of Rhipicephalus appendiculatus in Kenya. Parasites Vectors 9:353.  https://doi.org/10.1186/s13071-016-1631-1 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li ZB, Liu GH, Cheng TY (2018) Molecular characterization of hard tick Haemaphysalis longicornis from China by sequences of the internal transcribed spacers of ribosomal DNA. Exp Appl Acarol 74:171–176.  https://doi.org/10.1007/s10493-018-0210-x CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Luo L, Sun J, Yan J, Wang C, Zhang Z, Zhao L (2016) Detection of a novel Ehrlichia species in Haemaphysalis longicornis tick from China. Vector Borne Zoonotic Dis 16:363–367.  https://doi.org/10.1089/vbz.2015.1898 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Livanova NN, Tikunov AY, Kurilshikov AM, Livanov SG, Fomenko NV, Taranenko DE (2015) Genetic diversity of Ixodes pavlovskyi and I. persulcatus (Acari: Ixodidae) from the sympatric zone in the south of Western Siberia and Kazakhstan. Exp Appl Acarol 67:441–456.  https://doi.org/10.1007/s10493-015-9947-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Li ZB, Cheng TY, Xu XL, Song LL, Liu GH (2017) Genetic variation in mitochondrial genes of the tick Haemaphysalis flava collected from wild hedgehogs in China. Exp Appl Acarol 71:131–137.  https://doi.org/10.1007/s10493-017-0107-0 CrossRefPubMedGoogle Scholar
  26. 26.
    Latrofa MS, Dantas-Torres F, Annoscia G, Cantacessi C, Otranto D (2013) Comparative analyses of mitochondrial and nuclear genetic markers for the molecular identification of Rhipicephalus spp. Infect Genet Evol 20:422–427.  https://doi.org/10.1016/j.meegid.2013.09.027 CrossRefPubMedGoogle Scholar
  27. 27.
    Low VL, Tay ST, Kho KL, Koh FX, Tan TK, Lim YA (2015) Molecular characterisation of the tick Rhipicephalus microplus in Malaysia: new insights into the cryptic diversity and distinct genetic assemblages throughout the world. Parasites Vectors 8:341.  https://doi.org/10.1186/s13071-015-0956-5 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452.  https://doi.org/10.1093/bioinformatics/btp187 CrossRefGoogle Scholar
  29. 29.
    Liu X, Chen Z, Ren Q, Luo J, Xu X, Wu F (2018) Genetic diversity of Haemaphysalis qinghaiensis (Acari: Ixodidae) in western China. Exp Appl Acarol 74:427–441.  https://doi.org/10.1007/s10493-018-0242-2 CrossRefPubMedGoogle Scholar
  30. 30.
    Noh Y, Lee YS, Kim HC, Chong ST, Klein TA, Jiang J (2017) Molecular detection of Rickettsia species in ticks collected from the southwestern provinces of the Republic of Korea. Parasites Vectors 10:20.  https://doi.org/10.1186/s13071-016-1955-x CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Niu Q, Liu Z, Yang J, Yu P, Pan Y, Zhai B (2016) Genetic diversity and molecular characterization of Babesia motasi-like in small ruminants and ixodid ticks from China. Infect Genet Evol 41:8–15.  https://doi.org/10.1016/j.meegid.2016.03.007 CrossRefPubMedGoogle Scholar
  32. 32.
    Posada D (2008) JModelTest phylogenetic model averaging. Mol Biol Evol 5:1253–1256.  https://doi.org/10.1093/molbev/msn083 CrossRefGoogle Scholar
  33. 33.
    Paulauskas A, Galdikaitė-Brazienė E, Radzijevskaja J, Aleksandravičienė A, Galdikas M (2016) Genetic diversity of Ixodes ricinus (Ixodida: Ixodidae) ticks in sympatric and allopatric zones in Baltic countries. J Vector Ecol 41:244–253.  https://doi.org/10.1111/jvec.12219 CrossRefPubMedGoogle Scholar
  34. 34.
    Sprong H, Azagi T, Hoornstra D, Nijhof AM, Knorr S, Baarsma ME (2018) Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasites Vectors 11:145.  https://doi.org/10.1186/s13071-018-2744-5 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sakamoto JM, Goddard J, Rasgon JL (2014) Population and demographic structure of Ixodes scapularis Say in the eastern United States. PLoS One 9:e101389.  https://doi.org/10.1371/journal.pone.0101389 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tomassone L, Berriatua E, Sousa De, Duscher GG, Mihalca D, Silaghi C (2018) Neglected vector-borne zoonoses in Europe: into the wild. Vet Parasitol 251:17–26.  https://doi.org/10.1016/j.vetpar.2017.12.018 CrossRefPubMedGoogle Scholar
  37. 37.
    Umemiya-Shirafuji R, Hatta T, Okubo K, Sato M, Maeda H, Kume A (2017) Transovarial persistence of Babesia ovata DNA in a hard tick, Haemaphysalis longicornis, in a semi-artificial mouse skin membrane feeding system. Acta Parasitol 62:836–841.  https://doi.org/10.1515/ap-2017-0100 CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang H, Sun Y, Jiang H, Huo X (2017) Prevalence of severe febrile and thrombocytopenic syndrome virus, Anaplasma spp. and Babesia microti in hard ticks (Acari: Ixodidae) from Jiaodong Peninsula, Shandong Province. Vector Borne Zoonotic Dis 17:134–140.  https://doi.org/10.1089/vbz.2016.1978 CrossRefPubMedGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2019

Authors and Affiliations

  • Zhong-Bo Li
    • 1
    • 3
  • Yi-Tian Fu
    • 1
  • Tian-Yin Cheng
    • 1
    • 2
  • Guo-Min Yao
    • 3
  • Qiang-Hong Hou
    • 3
  • Fen Li
    • 1
    • 2
  • Yu Zhao
    • 1
    • 4
  • Feng-Cai Zou
    • 5
    Email author
  • Guo-Hua Liu
    • 1
    • 2
    Email author
  1. 1.Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary MedicineHunan Agricultural UniversityChangshaPeople’s Republic of China
  2. 2.Hunan Co-Innovation Center of Animal Production SafetyChangshaPeople’s Republic of China
  3. 3.College of Animal Science and TechnologyHuaiHua Vocational and Technical CollegeHuaihuaPeople’s Republic of China
  4. 4.College of Animal Science and Veterinary MedicineXinyang Agriculture and Forestry UniversityXinyangPeople’s Republic of China
  5. 5.College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingPeople’s Republic of China

Personalised recommendations