Skip to main content

Advertisement

Log in

Susceptibility to Various Coccidiostats in the Murine Coccidian Parasite Eimeria krijgsmanni

  • Short Communication
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Introduction

Murine Eimeria spp. have been used as effective experimental models of disease instead of large mammalian hosts such as cattle. We here examine drug susceptibility of the uncharacterized murine intestinal protozoan parasite, Eimeria krijgsmanni.

Materials and methods

The effectiveness of different treatments against infection of E. krijgsmanni was examined for suppression of oocyst shedding: ST mixture ST mixture, pyrimethamine, Ektecin and toltrazuril.

Results

ST mixture and pyrimethamine did not suppress oocyst shedding effectively. Although therapeutic efficacy of Ektecin was demonstrated, the dose required was larger than that for cattle and chickens. Oocyst shedding was only completely suppressed completely by continuous administration of toltrazuril. Furthermore, it was confirmed through morphological examination that early developmental stage zoites appeared in host epithelial cells during and following treatment by toltrazuril, and toltrazuril could not eliminate residual zoites in epithelial cells.

Conclusion

E. krijgsmanni may be relatively resistant to these anti-coccidian agents and might therefore have different characteristics that differ from other coccidia with regard to drug susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Aponte JJ, Schellenberg D, Egan A, Breckenridge A, Carneiro I, Critchley J, Danquah I, Dodoo A, Kobbe R, Lell B, May J, Premji Z, Sanz S, Sevene E, Soulaymani-Becheikh R, Winstanley P, Adjei S, Anemana S, Chandramohan D, Issifou S, Mockenhaupt F, Owusu-Agyei S, Greenwood B, Grobusch MP, Kremsner PG, Macete E, Mshinda H, Newman RD, Slutsker L, Tanner M, Alonso P, Menendez C (2009) Efficacy and safety of intermittent preventive treatment with sulfadoxine-pyrimethamine for malaria in African infants: a pooled analysis of six randomised, placebo-controlled trials. Lancet 374:1533–1542. https://doi.org/10.1016/S0140-6736(09)61258-7

    Article  CAS  PubMed  Google Scholar 

  2. Chapman HD (1997) Biochemical, genetic and applied aspects of drug resistance in Eimeria parasites of the fowl. Avian Pathol 26:221–244. https://doi.org/10.1080/03079459708419208

    Article  CAS  PubMed  Google Scholar 

  3. Chapman HD, Jeffers TK (2014) Vaccination of chickens against coccidiosis ameliorates drug resistance in commercial poultry production. Int J Parasitol 4:214–217. https://doi.org/10.1016/j.ijpddr.2014.10.002

    Article  Google Scholar 

  4. Daugschies A, Najdrowski M (2005) Eimeriosis in cattle: current understanding. J Vet Med B Infect Dis Vet Public Health 52:417–427. https://doi.org/10.1111/j.1439-0450.2005.00894.x

    Article  CAS  PubMed  Google Scholar 

  5. Dumas JL, Pizzolato G, Pechère JC (1999) Evaluation of trimethoprim and sulphamethoxazole as monotherapy or in combination in the management of toxoplasmosis in murine models. Int J Antimicrobe Agents 13:35–39

    Article  CAS  Google Scholar 

  6. Enemark HL, Dahl J, Enemark JMD (2015) Significance of timing on effect of metaphylactic toltrazuril treatment against eimeriosis in calves. Parasitol Res 114:201–212. https://doi.org/10.1007/s00436-015-4526-8

    Article  Google Scholar 

  7. Hanig S, Entzeroth R, Kurth M (2012) Chimeric fluorescent reporter as a tool for generation of transgenic Eimeria (Apicomplexa, Coccidia) strains with stage specific reporter gene expression. Parasitol Int 61:391–398. https://doi.org/10.1016/j.parint.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  8. Harder A, Haberkorn A (1989) Possible mode of action of toltrazuril: studies on two Eimeria species and mammalian and Ascaris suum enzymes. Parasitol Res 76:8–12

    Article  CAS  PubMed  Google Scholar 

  9. Hasbullah IH, Uchida T, Inamoto T, Nakai T, Nakai Y, Ogimoto K (1996) Medication of feedlot calves infected with Eimeria spp. by a combination of sulfamonomethoxine and ormetoprim. J Vet Med Sci 58:169–170

    Article  CAS  PubMed  Google Scholar 

  10. Hashimoto K, Tanaka T, Matsubayashi M, Endo K, Umemiya-Shirafuji R, Matsui T, Matsuo T (2014) Host specificity and in vivo infectivities of the mouse coccidian parasites Eimeria krijgsmanni. Acta Parasitol 59:337–342. https://doi.org/10.2478/s11686-014-0251-1

    Article  PubMed  Google Scholar 

  11. Heitlinger E, Spork S, Lucius R, Dieterich C (2014) The genome of Eimeria falciformis—reduction and specialization in a single host apicomplexan parasite. BMC Genom 20:696. https://doi.org/10.1186/1471-2164-15-696

    Article  Google Scholar 

  12. Inagaki-Ohara K, Dewi FN, Hisaeda H, Smith AL, Jimi F, Miyahira M, Abdel-Aleem AS, Horii Y, Nawa Y (2006) Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection. Infect Immun 74:5292–5301. https://doi.org/10.1128/IAI.02024-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jonsson NN, Piper EK, Gray CP, Deniz A, Constantinoiu CC (2011) Efficacy of toltrazuril 5% suspension against Eimeria bovis and Eimeria zuernii in calves and observations on the associated immunopathology. Parasitol Res 109:S113–S128. https://doi.org/10.1007/s00436-010-2129-y

    Article  PubMed  Google Scholar 

  14. Kurth M, Entzeroth R (2009) Reporter gene expression in cell culture stages and oocysts in Eimeria nieschulzi (Coccidia, Apicomplexa). Parasitol Res 104:303–310. https://doi.org/10.1007/s00436-008-1192-0

    Article  PubMed  Google Scholar 

  15. Levine MD (1982) Taxonomy and life cycles of coccidia. In: Long PL (ed) The biology of the coccidia. University Park Press, Baltimore, pp 1–33

    Google Scholar 

  16. Linh BK, Hayashi T, Horii Y (2009) Eimeria vermiformis infection reduces goblet cells by multiplication in the crypt cells of the small intestine of C57BL/6 mice. Parasitol Res 104:789–794. https://doi.org/10.1007/s00436-008-1256-1

    Article  PubMed  Google Scholar 

  17. Matsui T, Fujino T, Kobayashi F, Morita T, Imai S (2006) Life cycle of Eimeria krijgsmanni-like coccidium in the mouse (Mus musculus). J Vet Med Sci 68:331–336. https://doi.org/10.1292/jvms.68.331

    Article  PubMed  Google Scholar 

  18. Mehlhorn H (ed) (2008) Encyclopedic reference of parasitology, vol 1, 3rd edn. Springer, Berlin

    Google Scholar 

  19. Mundt HC, Mundt-Wustenberg S, Daugscies A, Joachim A (2007) Efficacy of various anticoccidials against experimental porcine neonatal isosporosis. Parasitol Res 100:401–411. https://doi.org/10.1007/s00436-006-0314-9

    Article  CAS  PubMed  Google Scholar 

  20. Nakai Y, Ogimoto K, Ohara E, Kato M (1988) Anticoccidial activity of feed additive sulfamonomethoxine and or methoprim in chickens. Jpn J Zootech Sci 59:523–526. https://doi.org/10.2508/chikusan.59.523

    Article  CAS  Google Scholar 

  21. Ono Y, Matsubayashi M, Kawaguchi H, Tsujio M, Mizuno M, Tanaka T, Masatani T, Matsui T, Matsuo T (2015) Course of induced infection by Eimeria krijgsmanni in immunocompetent and immunodeficient mice. Parasitol Res 115:211–215. https://doi.org/10.1007/s00436-015-4737-z

    Article  PubMed  Google Scholar 

  22. Philippe P, Alzieu JP, Taylor MA, Dorchies P (2014) Comparative efficacy of diclazuril (Vecoxan®) and toltrazuril (Baycox bovis®) against natural infections of Eimeria bovis and Eimeria zuernii in French calves. Vet Parasitol 206:129–137. https://doi.org/10.1016/j.vetpar.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  23. Schmid M, Heitlinger E, Spork S, Mollenkopf HJ, Lucius R, Gupta N (2014) Eimeria falciformis infection of the mouse caecum identifies opposing roles of IFNγ-regulated host pathways for the parasite development. Mucosal Immunol 7:969–982. https://doi.org/10.1038/mi.2013.115

    Article  CAS  PubMed  Google Scholar 

  24. Takeo T, Tanaka T, Matsubayashi M, Maeda H, Kusakisako K, Matsui T, Mochizuki M, Matsuo T (2014) Molecular and phylogenetic characterizations of an Eimeria krijgsmanni Yakimoff & Gouseff, 1938 (Apicomplexa: Eimeriidae) mouse intestinal protozoan parasite by partial 18S ribosomal RNA gene sequence analysis. Parasitol Int 63:627–630. https://doi.org/10.1016/j.parint.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  25. Takeo T, Tanaka T, Matsubayashi M, Tsujio M, Umemiya-Shirafuji R, Tsuji N, Fujisaki K, Matsui T, Matsuo T (2015) Evaluation of Eimeria krijgsmanni as a murine model for testing the efficacy of anti-parasitic agents. Acta Parasitol 60:190–195. https://doi.org/10.1515/ap-2015-0027

    Article  CAS  PubMed  Google Scholar 

  26. Verdier RI, Fitzgerald DW, Johnson WD Jr, Pape JW (2000) Trimethoprim-sulfamethoxazole compared with ciprofloxacin for treatment and prophylaxis of Isospora belli and Cyclospora cayetanensis infection in HIV-infected patients. A randomized, controlled trial. Ann Intern Med 132:885–888

    Article  CAS  PubMed  Google Scholar 

  27. Wallach M (2010) Role of antibody in immunity and control of chicken coccidiosis. Trends Parasitol 26:382–387. https://doi.org/10.1016/j.pt.2010.04.004

    Article  PubMed  Google Scholar 

  28. Wei H-X, Wei S-S, Lindsay DS, Peng H-J (2015) A systematic review and meta-analysis of the efficacy of anti-Toxoplasma gondii medicines in humans. PLoS One 10:e0138204. https://doi.org/10.1371/journal.pone.0138204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Williams RB (1999) A compartmentalized model for the estimation of the cost of coccidiosis to the world’s chicken production industry. Int J Parasitol 29:1209–1229. https://doi.org/10.1016/S0020-7519(99)00086-7

    Article  CAS  PubMed  Google Scholar 

  30. Wunderlich F, AI-Quraishy S, Steinbrenner H, Sies H, Dkhil MA (2014) Towards identifying novel anti-Eimeria agents: trace elements, vitamins, and plant-based natural products. Parasitol Res 133:3547–3556. https://doi.org/10.1007/s00436-014-4101-8

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Nos. 16K08025 and 16H05803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohide Matsuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, K., Tsujio, M., Matsubayashi, M. et al. Susceptibility to Various Coccidiostats in the Murine Coccidian Parasite Eimeria krijgsmanni. Acta Parasit. 64, 418–422 (2019). https://doi.org/10.2478/s11686-019-00052-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11686-019-00052-w

Keywords

Navigation