Advertisement

Acta Parasitologica

, Volume 64, Issue 4, pp 693–699 | Cite as

Alterations in the Mitochondrial Physiology of Biomphalaria glabrata (Mollusca: Gastropoda) After Experimental Infection by Angiostrongylus cantonensis (Nematoda: Metastrongylidae)

  • Vinícius Menezes Tunholi-AlvesEmail author
  • Victor Menezes Tunholi
  • Ludimila Santos Amaral
  • Juberlan da Silva Garcia
  • Mariana Gomes Lima
  • Renato Augusto DaMatta
  • Jairo Pinheiro
Original Paper

Abstract

Background

Angiostrongylus cantonensis is a metastrongylid nematode that has a heteroxenous cycle, where snails act as intermediate hosts and the rodents Rattus rattus and Rattus novergicus are the definitive hosts. However, humans may act as accidental hosts presenting an atypical form of parasitism. This fact has motivated research to better understand systems of relationships involving A. cantonensis, targeting the control of species of gastropods that act as intermediary hosts.

Methods

For this, six groups were formed: three control groups (uninfected) and three infected groups, exposed to approximately 1200 L1 larvae of A. cantonensis. At the end of each week (1, 2, and 3 weeks), snails were dissected without anesthesia and the gonad–digestive gland (DGG) complex was separated for determination of oxygen consumption through high-resolution titration-injection respirometer (Oroboros, Oxygraph; Innsbruck, Austria).

Results

The results indicate suppression of mitochondrial oxidative metabolism of the host and compromised in different mitochondrial respiratory states. This effect, mainly observed in the group exposed to 1 week of infection, showed a decrease of approximately 38% (2.78 ± 0.37 pmol O2/mg of tissue; P < 0.05), 41% (2.76 ± 0.34 pmol O2/mg of tissue; P < 0.05) e 46% (2.91 ± 0.36 pmol O2/mg of tissue; P < 0.05) in the basal oxygen consumption after sequential addition (P + M), succinate and (ADP) in the respiratory medium, differing significantly from the control group.

Conclusion

The results presented indicate that the prepatent infection by this metastrongylid impairs the aerobic oxidative metabolism of its host, causing a reduction in basal oxygen consumption. This effect, observed at the start of development of the parasites, indicates that this stage is the most critical for the success of the infection, and can be explained by a reduction of the mitochondrial density of the tissue analyzed, or also by suppression of enzyme centers related to the oxidative reactions.

Keywords

Host–parasite relationship Mitochondrial metabolism Biomphalaria glabrata Angiostrongylus cantonensis 

Notes

Acknowledgements

This study was supported in part by Conselho Nacional para o Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

References

  1. 1.
    Bezerra JCB, Becker W, Zelck UE (1997) A comparative study of the organic acid content of the hemolymph of Schistosoma mansoni-resistant and susceptible strains of Biomphalaria glabrata. Mem Inst Oswaldo Cruz 92:421–425CrossRefGoogle Scholar
  2. 2.
    Bishop T, Ocloo A, Brand MD (2002) Structure and function of mitochondria in hepatopancreas cells from metabolically depressed snails. Physiol Biochem Zool 75:134–144CrossRefGoogle Scholar
  3. 3.
    Bremer K, Monk CT, Gurd BJ, Moyes CD (2012) Transcriptional regulation of temperature-induced remodeling of muscle bioenergetics in goldfish. Am J Physiol 303:150–158Google Scholar
  4. 4.
    Caldeira RL, Mendonça CLG, Goveia CO, Lenzi HL, Graeff-Teixeira C, Lima WS, Mota EM, Pecora IL, Medeiros AMZ, Carvalho OS (2007) First Record of molluscs naturally infected with Angiostrongylus cantonensis (Chen, 1935) (Nematoda: Metastrongylidae) in Brazil. Mem Inst Oswaldo Cruz 102:887–889CrossRefGoogle Scholar
  5. 5.
    Dos-Santos RS, Galina A, Seixas W (2012) Cold acclimation increases mitochondrial oxidative capacity without inducing mitochondrial uncoupling in goldfish white skeletal muscle. BiO 2:82–87CrossRefGoogle Scholar
  6. 6.
    Fernandes MC (1949) Métodos Escolhidos de Técnicas Microscópicas. Imprensa Nacional, Rio de JaneiroGoogle Scholar
  7. 7.
    Gnaiger E (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol 128:277–297CrossRefGoogle Scholar
  8. 8.
    Graeff-Teixeira C, Silva ACA, Yoshimura K (2009) Update on eosinophili meningoencephalitis and its clinical relevance. Clin Microbiol 22:322–348CrossRefGoogle Scholar
  9. 9.
    Humason GL (1979) Animal tissue techniques. Freeman, San FranciscoGoogle Scholar
  10. 10.
    Ibrahim MM (2007) Prevalence and intensity of Angiostrongylus cantonensis in freshwater snails in relation to some ecological and biological factors. Parasite 14:61–70CrossRefGoogle Scholar
  11. 11.
    Ishak MM, Mohamed AM, Shraf AA (1975) Carbohydrate metabolism in uninfected and trematode-infected snails Biomphalaria alexandrina and Bulinus truncatus. Comp Biochem Physiol B 53:499–505CrossRefGoogle Scholar
  12. 12.
    Kuznetsov AV, Strobl D, Ruttmann E, Konigsrainer A, Margreiter R, Gnaiger E (2002) Evaluation of mitochondrial respiratory function in small biopsies of liver. Anal Biochem 305:186–194CrossRefGoogle Scholar
  13. 13.
    Lemieux H, Semsroth S, Antretter H, Höfer D, Gnaiger E (2011) Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 43:1729–1738CrossRefGoogle Scholar
  14. 14.
    Lemoine CM, Genge CE, Moyes CD (2008) Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature. J Exp Biol 211:1448–1455CrossRefGoogle Scholar
  15. 15.
    Maldonado A, Simões RO, Oliveira AP, Mota EM, Fernandez MA, Pereira ZM, Monteiro SS, Torres EJ, Thieng SC (2010) First report of Angiostrongylus cantonensis (Nematoda: Metastrongylidae) in Achatina fulica (Mollusca: Gastropoda) from Southeast and South Brazil. Mem Inst Oswaldo Cruz 105:1–4CrossRefGoogle Scholar
  16. 16.
    Mantawy MM, Mohamed NZ, Arfa AF, Aly HF (2013) Carboxylic acids and their metabolic enzymes as new novel biomarkers of susceptible, resistant strains of Biomphalaria alexandrina and snails infected with Schistosoma mansoni. Int J Sci Eng Technol 04:1039–1047Google Scholar
  17. 17.
    Mohamed AM, Ishak MM (1982) Comparative effects of schistosome infection and starvation on the respiratory transport chain of the snails Biomphalaria alexandrina and Bulinus truncatus. Comp Biochem Physiol B 71:289–292CrossRefGoogle Scholar
  18. 18.
    Morassutti AL, Thiengo SC, Fernandez M, Sawanyawisuth K, Graeff-Teixeira C (2014) Eosinophilic meningitis caused by Angiostrongylus cantonensis: an emergent disease in Brazil. Mem Inst Oswaldo Cruz 109:399–407CrossRefGoogle Scholar
  19. 19.
    Paraense WL (1975) Estado atual da sistemática dos planorbídeos brasileiros. Arquivos do Museu Nacional 55:105–111Google Scholar
  20. 20.
    Thiengo SC, Maldonado A, Mota EM, Torres EJ, Caldeira R, Carvalho OS, Oliveira AP, Simões RO, Fernandez MA, Lanfredi RM (2010) The giant African snail Achatina fulica as natural intermediate host of Angiostrongylus cantonensis in Pernambuco, northeast Brazil. Acta Trop 115:194–199CrossRefGoogle Scholar
  21. 21.
    Tunholi VM, Tunholi-Alves VM, Lustrino D, Castro N, Sant’Ana L, Garcia J, Maldonado AJ, Santos MAJ, Rodrigues MLA, Pinheiro J (2013) Aerobic to anaerobic transition in Biomphalaria glabrata (Say, 1818) infected with different miracidial doses of Echinostoma paraensei (Lie and Basch, 1967) by high performance liquid chromatography. Exp Parasitol 133:403–410CrossRefGoogle Scholar
  22. 22.
    Tunholi VM, Tunholi-Alves VM, Santos AT, Garcia J, Maldonado AJ, da-Silva WS, Pinheiro J (2016) Evaluation of the mitochondrial system in the gonad-digestive gland complex of Biomphalaria glabrata (Mollusca, Gastropoda) after infection by Echinostoma paraensei (Trematoda, Echinostomatidae). J Invertebr Pathol 136:136–141CrossRefGoogle Scholar
  23. 23.
    Tunholi-Alves VM, Tunholi VM, Castro RN, Sant’ana L, Santos-Amaral L, Garcia J, Oliveira AM, Maldonado A, Thiengo SC, Pinheiro J (2014) Activation of anaerobic metabolism in Biomphalaria glabrata (Mollusca:Gastropoda) experimentally infected by Angiostrongylus cantonensis (Nematoda, Metastrongylidae) by high-performance liquid chromatography. Parasitol Int 63:64–68CrossRefGoogle Scholar
  24. 24.
    Tunholi-Alves VM, Tunholi VM, Garcia J, Costa-Neto SF, Maldonado A, Santos MAJ, Thiengo SC, Pinheiro J (2014) Changes in the calcium metabolism of Biomphalaria glabrata experimentally infected with Angiostrongylus cantonensis. J Helminthol 88:160–165CrossRefGoogle Scholar
  25. 25.
    Tunholi-Alves VM, Tunholi VM, Lustrino D, Amaral LS, Thiengo SC, Pinheiro J (2011) Changes in the reproductive biology of Biomphalaria glabrata experimentally infected with the nematode Angiostrongylus cantonensis. J Invertebr Pathol 108:220–223CrossRefGoogle Scholar
  26. 26.
    Tunholi-Alves VM, Tunholi VM, Pinheiro J, Thiengo SC (2012) Effects of infection by larvae of Angiostrongylus cantonensis (Nematoda, Metastrongylidae) on the metabolism of the experimental intermediate host Biomphalaria glabrata. Exp Parasitol 131:143–147CrossRefGoogle Scholar
  27. 27.
    Wang QP, De-Hua L, Xing-Quan Z, Xiao-Guang C, Zhao-Rong L (2008) Human angiostrongyliasis. Lancet Infect Dis 8:621–630CrossRefGoogle Scholar
  28. 28.
    Willcox HP, Coura JR (1989) Nova concepção para o método de Baermann Moraes—Coutinho na pesquisa de larvas de nematódeos. Mem Inst Oswaldo Cruz 84:539–565Google Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2019

Authors and Affiliations

  • Vinícius Menezes Tunholi-Alves
    • 1
    • 2
    Email author
  • Victor Menezes Tunholi
    • 1
    • 2
  • Ludimila Santos Amaral
    • 1
  • Juberlan da Silva Garcia
    • 3
  • Mariana Gomes Lima
    • 1
  • Renato Augusto DaMatta
    • 4
  • Jairo Pinheiro
    • 1
    • 2
  1. 1.Departamento de Ciências FisiológicasInstituto de Biologia, Universidade Federal, Rural do Rio de JaneiroSeropédicaBrazil
  2. 2.Curso de Pós-Graduação em Ciências Veterinárias, Departamento de Parasitologia Animal, Instituto de VeterináriaUniversidade Federal Rural do Rio de JaneiroSeropédicaBrazil
  3. 3.Laboratório de Biologia e Parasitologia de Mamíferos Silvestres ReservatóriosInstituto Oswaldo CruzRio de JaneiroBrazil
  4. 4.Laboratório de Biologia Celular e TecidualCentro de Biociências e Biotecnologia, UENFRio de JaneiroBrazil

Personalised recommendations