Skip to main content
Log in

Sequence Analysis of the cAMP-Dependent Protein Kinase Regulatory Subunit-Like Protein From Trypanosoma brucei

  • Research note
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Purpose

Study the N-terminal, C-terminal, and linker regions of the TbPKAr using homology modeling.

Methods

The amino acid sequences of the N-terminal, C-terminal, and linker regions of the TbPKAr were individually examined by means of BLAST analysis and in silico secondary structure predictions with several programs.

Results

The TbPKAr C-terminal region, showed a well-folded α/β structure, which consists of two concurrent flattened β-barrel-shaped domains that are separated by an elongated central α-helix similar to its mammalian counterpart, the TbPKAr linker region contains a PKA phosphorylation site and was predicted to be rather disordered. Our analysis also indicated that the TbPKAr N-terminal region lacks a docking/dimerization domain but is enriched in motifs known as leucine-rich repeats (LRR).

Conclusion

The replacement of the docking/dimerization domain by different structural motifs suggests the inability of TbPKAr to form homodimers; however, the function of the TbPKAr N-terminal LRR-containing domain in Kinetoplastidae parasites is still unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ashok Kumar T. 2013. CFSSP: Chou and Fasman secondary structure prediction server. Wide Spectrum Research Journal, 1, 15–19. https://doi.org/10.5281/zenodo.50733

  2. Chou P.Y., Fasman G.D. 1974. Prediction of protein conformation. Biochemistry, 13, 222–245. https://doi.org/10.1021/bi00699a002

  3. Dequesnes M. (Ed.) 2004. Livestock Trypanosomoses and their vectors in Latin America. World Organization for Animal Health (OIE). World animal health information database (WAHID) [book on line]. Available: https://www.oie.int/doc/ged/D9818.PDF

  4. Diskar M., Zenn H.M., Kaupisch A., Prinz A., Herberg F.W. 2007. Molecular basis for isoform-specific autoregulation of protein kinase A. Cell Signal, 19, 2024–2034. https://doi.org/10.1016/j.cellsig.2007.05.012

  5. Drozdetskiy A., Cole C., Procter J., Barton G. J. 2015. JPred4: a protein secondary structure prediction server. Nucleic Acids Research, 43(W1), W389–W394.

  6. Enkhbayar P., Kamiya M., Osaki M., Matsumoto T., Matsushima N. 2003. Structural Principles of Leucine-Rich Repeat (LRR) Proteins. PROTEINS: Structure, Function, and Bioinformatics, 54, 394–403. https://doi.org/10.1002/prot.10605

  7. Garnier J, Gibrat J. F., Robson B. 1996. GOR secondary structure prediction method version IV. Methods in Enzymology, 266, 540–553

  8. Jones D. T. and Cozzetto D. 2015. DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics, 31, 857–863

  9. Kajava A.V., Vassart G., Wodak S.J. 1995. Modeling of the three dimensional structure of proteins with the typical leucine-rich repeats. Structure, 3, 867–877. https://doi.org/10.1016/s0969-2126(01)00222-2

  10. Kajava A.V. 1998. Structural diversity of leucine-rich repeat proteins. Journal Molecular Biology, 277, 519–527. https://doi.org/10.1006/jmbi.1998.1643

  11. Kelley L.A., Sternberg J.E. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols, 4, 363–371. https://doi.org/10.1038/nprot.2009.2

  12. Koradi R., Billeter M., Wüthrich K. 1996. MOLMOL: a program for display and analysis of macromolecular structures. Journal of Molecular Graphics, 14, 51–55. https://doi.org/10.1016/0263-7855(96)00009-4

  13. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., et al. 2007. Sequence analysis: Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948. https://doi.org/10.1093/bioinformatics/btm404

  14. The UniProt Consortium. 2015. UniProt: a hub for protein information. Nucleic Acids Research. 43, D204–D212. https://doi.org/10.1093/nar/gku989

  15. Martin B.R., Deerinck T.J., Ellisman M.H., Taylor S.S., Tsien R.Y. 2007. Isoform-specific PKA dynamics revealed by dye-triggered aggregation and DAKAP1α‑mediated localization in living cells. Chemistry & Biology, 14, 1031–1042. https://doi.org/10.1016/j.chembiol.2007.07.017

  16. Michel J.J.C., Scott J.D. 2002. AKAP mediated signal transduction. Annual Review of Pharmacology and Toxicology, 42 (1), 235–257

    Article  PubMed  CAS  Google Scholar 

  17. Miyashita H., Kuroki Y., Matsushima N. 2014. Novel leucine rich repeat domains in proteins from unicellular eukaryotes and bacteria. Protein & Peptide Letters, 21, 292–305. https://doi.org/10.2174/09298665113206660112

  18. Rost B., Yachdav G., Liu, J. 2004. The PredictProtein server. Nucleic Acids Research, 32, W321–W326

  19. Sen T.Z., Jernigan R.L., Garnier J., Kloczkowski A. 2005. GOR V server for protein secondary structure prediction. Bioinformatics, 21, 2787–2788

  20. Shalaby T., Liniger M., Seebeck T. 2001. The regulatory subunit of a cGMP-regulated protein kinase A of Trypanosoma brucei. European Journal of Biochemistry, 268, 6197–6206. https://doi.org/10.1046/j.0014-2956.2001.02564.x

  21. Su Y., Dostmann W., Herberg F., Durick K., Xuong N., Ten Eyck L., Taylor S., Varughese K. 1995. Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science 269 (5225), 807–813

    Article  PubMed  CAS  Google Scholar 

  22. Taylor S.S., Bubis J., Toner-Webb J., Saraswat L.D., First E.A., Buechler J.A., et al. 1988. cAMP-dependent protein kinase: prototype for a family of enzymes. The FASEB Journal, 2, 2677–2685. https://doi.org/10.1096/fasebj.2.11.3294077

  23. Taylor S.S., 1989. cAMP-dependent protein kinase. Model for an enzyme family. Journal of Biological Chemistry. 264, 8443–8446

  24. Taylor S.S., Ilouz R., Zhang P., Kornev A.P. 2012. Assembly of allosteric macromolecular switches: lessons from PKA. Nature Review Molecular Cell Biology, 13, 646–658. https://doi.org/10.1038/nrm3432

  25. Vassella E., Reuner B., Yutzy B., Boshart M. 1997. Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. Journal of Cell Science, 110, 2661–2671

  26. Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y. 2015. The I-TASSER Suite: estructura de proteínas y predicción de la función. Nature Methods, 12, 7–8

  27. Zetterqvist O., Ragnarsson, U. 1982. The structural requirements of substrates of cyclic AMP-dependent protein kinase. FEBS Letters, 139, 287–290. https://doi.org/10.1016/0014-5793(82)80872-7

Download references

Acknowledgements

The authors thank Juan Ricardo Rodrigues for his very useful comments and for reviewing an initial draft of the manuscript. This research was supported by Grant numbers S1-IN-CB-002-17 from Decanato de Investigación y Desarrollo, Universidad Simón Bolívar, Caracas, Venezuela, and 2013001659 from FONACIT, Caracas, Venezuela.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson A. Araujo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, N.A., Bubis, J. Sequence Analysis of the cAMP-Dependent Protein Kinase Regulatory Subunit-Like Protein From Trypanosoma brucei. Acta Parasit. 64, 262–267 (2019). https://doi.org/10.2478/s11686-019-00037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11686-019-00037-9

Keywords

Navigation