Advertisement

Acta Parasitologica

, Volume 64, Issue 2, pp 257–261 | Cite as

Ethanol Extracts from Thai Plants have Anti-Plasmodium and Anti-Toxoplasma Activities In Vitro

  • Arpron Leesombun
  • Sookruetai Boonmasawai
  • Yoshifumi NishikawaEmail author
Short Communication
  • 75 Downloads

Abstract

Purpose

The ethanol extracts from seven Thai plants, Kaempferia parviflora, Stemona tuberosa Lour., Ananas comosus, Punica granatum, Musa sapientum L., Pseuderanthemum palatiferum and Annona muricata L., which are traditionally used in Thailand to support human health, were evaluated for their anti-Plasmodium and anti-Toxoplasma activities, and for their cytotoxicities against human foreskin fibroblasts in vitro.

Results

The K. parviflora, P. palatiferum and A. muricata extracts were active against P. falciparum (3D7) with selectivity index (SI) values > 10, while their half maximal inhibitory concentrations (IC50) were 28.7 µg/ml, 78.8 µg/ml and 46.1 µg/ml, respectively. Extracts from K. parviflora and M. sapientum (ripe fruit peel) inhibited T. gondii (RH) growth with IC50 values of 53.5 µg/ml and 90.4 µg/ml, respectively. The SI values of the extracts from K. parviflora and M. sapientum (ripe fruit peel) were 9.0 and 10.8, respectively.

Conclusion

Our data show that some of the aforementioned ethanol extracts are potential sources of new drugs to treat Plasmodium and Toxoplasma infections.

Keywords

Natural plants Traditional medicine Plasmodium falciparum Toxoplasma gondii 

Notes

Acknowledgements

The authors thank the Faculty of Veterinary Science, Mahidol University for providing the crude plant extracts. Arpron Leesombun was supported by the Special Financial Support Program for International Students of the Doctoral Program of Obihiro University of Agriculture and Veterinary Medicine. We are grateful to S. Kawazu (Obihiro University of Agriculture and Veterinary Medicine) for providing P. falciparum. We thank the Hokkaido Kushiro Red Cross Blood Center for supplying human red blood cells, and Sandra Cheesman, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript. This research was supported by a grant for the Suhara Memorial Foundation 2017.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bagavan A., Rahuman A.A., Kaushik N.K., Sahal D. 2011. In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum. Parasitology research, 108, 15-22.  https://doi.org/10.1007/s00436-010-2034-4 CrossRefPubMedGoogle Scholar
  2. 2.
    Batista R., Silva Ade J. Jr., de Oliveira A. B. 2009. Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules, 14, 3037−3072.  https://doi.org/10.3390/molecules14083037 CrossRefPubMedGoogle Scholar
  3. 3.
    Berthi W., González A., Rios A., Blair S., Cogollo Á., Pabóncorresponding A. 2018. Anti-plasmodial effect of plant extracts from Picrolemma huberi and Picramnia latifolia. Malaria journal, 17, 151.  https://doi.org/10.1186/s12936-018-2301-x CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dell’Agli M., Galli G.V., Corbett Y., Taramelli D., Lucantoni L., Habluetzel A., et al. 2009. Antiplasmodial activity of Punica granatum L. fruit rind. Journal of ethnopharmacology, 125, 279−285.  https://doi.org/10.1016/j.jep.2009.06.025 CrossRefPubMedGoogle Scholar
  5. 5.
    Dell’agli M., Galli G.V., Bulgari M., Basilico N., Romeo S., Bhattacharya D., et al. 2010 Ellagitannins of the fruit rind of pomegranate (Punica granatum) antagonize in vitro the host inflammatory response mechanisms involved in the onset of malaria. Malaria journal, 17, 11379−11390.  https://doi.org/10.1186/1475-2875-9-208 CrossRefGoogle Scholar
  6. 6.
    Dias D.A., Urban S., Roessner U. 2012. A Historical Overview of Natural Products in Drug Discovery. Metabolites, 2, 303−336.  https://doi.org/10.3390/metabo2020303 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fadaeinasab M., Nikzad S., Mohan G., Mohd Ali H., Kadir H. A. 2015. Annona muricata (Annonaceae): A Review of Its Traditional Uses, Isolated Acetogenins and Biological Activities. International journal of molecular sciences, 16, 15625−15658.  https://doi.org/10.3390/ijms160715625 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Giang P.M., Bao H.V., Son P.T. 2003. Phytochemical study on Pseuderanthemum palatiferum (nees) Radlk., Acanthaceae. Journal of chemistry, 41, 115–118.Google Scholar
  9. 9.
    Johnson J.D., Dennull R.A., Gerena L., Lopez-Sanchez M., Roncal N.E., Waters N.C. 2007. Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening. Antimicrobial agents and chemotherapy, 51, 1926−1933.  https://doi.org/10.1128/aac.01607-06 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kaou A.M., Mahiou-Leddet V., Hutter S., Aïnouddine S., Hassani S., Yahaya I., et al. 2008. Antimalarial activity of crude extracts from nine African medicinal plants. Journal of Ethnopharmacology, 116, 74-83.  https://doi.org/10.1016/j.jep.2007.11.001 CrossRefPubMedGoogle Scholar
  11. 11.
    Kaushik N.K., Murali T.S., Sahal D., Suryanarayanan T.S. 2014. A search for antiplasmodial metabolites among fungal endophytes of terrestrial and marine plants of southern India. Acta parasitological, 59, 745-57.  https://doi.org/10.2478/s11686-014-0307-2 CrossRefGoogle Scholar
  12. 12.
    Leesombun A., Boonmasawai S., Shimoda N., Nishikawa Y. 2016. Effects of Extracts from Thai Piperaceae Plants against Infection with Toxoplasma gondii. PloS one, 11, e0156116.  https://doi.org/10.1371/journal.pone.0156116 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lin L.G., Yang X.Z., Tang C.P., Ke C.Q., Zhang J.B., Ye Y. 2008. Antibacterial stilbenoids from the roots of Stemona tuberosa. Phytochemistry, 69, 457−463.  https://doi.org/10.1016/j.phytochem.2007.07.012 CrossRefPubMedGoogle Scholar
  14. 14.
    Ménan H., Banzouzi J.T., Hocquette A., Pélissier Y., Blache Y., Koné M., et al. 2006. Antiplasmodial activity and cytotoxicity of plants used in West African traditional medicine for the treatment of malaria. Journal of ethnopharmacology, 105, 131-136.  https://doi.org/10.1016/j.jep.2005.10.027 CrossRefPubMedGoogle Scholar
  15. 15.
    Montoya J.G. and Liesenfeld O. 2004. Toxoplasmosis. Lancet, 363, 1965−1976.  https://doi.org/10.1016/s0140-6736(04)16412-x CrossRefPubMedGoogle Scholar
  16. 16.
    Mohd Abd Razak M.R., Afzan A., Ali R., Amir Jalaluddin N.F., Wasiman M.I., Shiekh Zahari S.H., et al. 2014. Effect of selected local medicinal plants on the asexual blood stage of chloroquine resistant Plasmodium falciparum. BMC complementary and alternative medicine, 14, 492.  https://doi.org/10.1186/1472-6882-14-492 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Nishikawa Y., Xuenan X., Makala L., Vielemeye O., Joiner K. A., Nagasawa H. 2003. Characterisation of Toxoplasma gondii engineered to express mouse interferon-gamma. International journal for parasitology, 33, 25−1535.CrossRefGoogle Scholar
  18. 18.
    Pavan R., Jain S., Shraddha., Kumar A. 2012. Properties and Therapeutic Application of Bromelain: A Review. Biotechnology research international, 2012, 976203.  https://doi.org/10.1155/2012/976203 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Phillips M.A., Burrows J.N., Manyando C., van Huijsduijnen R.H., Van Voorhis W.C., Wells T.N.C. 2017. Malaria. Nature reviews. Disease primers, 3, 17050.  https://doi.org/10.1038/nrdp.2017.50 CrossRefPubMedGoogle Scholar
  20. 20.
    Shaygannia E., Bahmani M., Zamanzad B., Rafieian-Kopaei M. 2016. A Review Study on Punica granatum L. Journal of evidence-based complementary & alternative medicine, 21, 221−227.  https://doi.org/10.1177/2156587215598039 CrossRefGoogle Scholar
  21. 21.
    Somsak V., Polwiang N., Chachiyo S. 2016. In Vivo Antimalarial Activity of Annona muricata Leaf Extract in Mice Infected with Plasmodium berghei. Journal of pathogens, 2016, 3264070.  https://doi.org/10.1155/2016/3264070 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Trager W., Jensen J. B. 1976. Human malaria parasites in continuous culture. Science, 193, 673−675.  https://doi.org/10.1645/0022-3395(2005)091%5b0484:hmpicc%5d2.0.co;2 CrossRefPubMedGoogle Scholar
  23. 23.
    Waghmare J.S., Kurhade A.H. 2014. GC-MS analysis of bioactive components from banana peel (Musa sapientum peel). European journal of experimental biology, 4, 10−15.Google Scholar
  24. 24.
    Yenjai C., Prasanphen K., Daodee S., Wongpanich V., Kittakoop P. 2004. Bioactive flavonoids from Kaempferia parviflora. Fitoterapia, 75, 89−92.CrossRefPubMedGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2019

Authors and Affiliations

  • Arpron Leesombun
    • 1
    • 2
  • Sookruetai Boonmasawai
    • 2
  • Yoshifumi Nishikawa
    • 1
    Email author
  1. 1.National Research Center for Protozoan DiseasesObihiro University of Agriculture and Veterinary MedicineObihiroJapan
  2. 2.Department of Preclinic and Applied Animal Science, Faculty of Veterinary ScienceMahidol UniversityNakhon PathomThailand

Personalised recommendations