Advertisement

Acta Parasitologica

, Volume 64, Issue 2, pp 232–235 | Cite as

In Vitro Susceptibility to Metronidazole of Tritrichomonas foetus Bovine Isolates from Argentina

  • María Belén Rivero
  • Melchor Emilio Luque
  • Maria Eugenia Abdala
  • Bruno Elías Luna
  • David Di Lullo
  • Ignacio Eduardo Echaide
  • Pedro Gabriel Carranza
  • Fernando David RiveroEmail author
Original Paper
  • 22 Downloads

Abstract

Background

Tritrichomonas foetus is the etiologic agent of the sexually transmitted disease Bovine Trichomonosis (BT). In Argentina, BT is endemic and represents a relevant health problem that causes reproductive inefficiency in cattle and large economic losses. Metronidazole is the drug of choice in the treatment of BT. Treatment has been associated with a temporary resolution of the clinical signs but is not able to control the disease. In recent years, the apparition of in vivo and in vitro aerobic and anaerobic resistance leading to ineffective treatments has been reported.

Aims

Thus, the aim of the present study was to explore the susceptibility of six different isolates of T. foetus under aerobic (AC) and anaerobic (ANC) conditions.

Results and discussion

Six isolates of T. foetus were obtained from samples of preputial smegma of bovine origin. Values of minimum lethal concentration and minimum inhibitory concentration were higher than those observed in other works and represent current data in Argentina and provide information to establish new treatment protocols.

Keywords

Tritrichomonas foetus isolates Bovine trichomonosis In vitro susceptibility Metronidazole 

Notes

References

  1. 1.
    Bader C., Jesudoss Chelladurai J., Thompson K., Hall, C., Carlson S.A., Brewer M.T., 2016. Evaluation of high-throughput assays for in vitro drug susceptibility testing of Tritrichomonas foetus trophozoites. Veterinary Parasitology, 223, 34–37.  https://doi.org/10.1016/j.vetpar.2016.04.006
  2. 2.
    Bouma M.J., Snowdon D., Fairlamb A.H., Ackers J.P., 1998. Activity of disulfiram (bis(diethylthiocarbamoyl)disulphide) and ditiocarb (diethyldithiocarbamate) against metronidazole-sensitive and -resistant Trichomonas vaginalis and Tritrichomonas foetus. Journal of Antimicrobial Chemotherapy, 42, 817–820.  https://doi.org/10.1093/jac/42.6.817
  3. 3.
    Campero C., Cobo E., 2006. Tritrichomonas foetus: patogénesis de la mortalidad embrionaria/fetal, caracterización de antígenos vacunales y respuesta inmune inducida. Revista de Medicina Veterinaria. 87, 47–56. (In Spanish)Google Scholar
  4. 4.
    Carvalho K.P., Gadelha A.P.R., 2007. Effects of three benzimidazoles on growth, general morphology and ultrastructure of Tritrichomonas foetus. FEMS Microbiology Letters, 275, 292–300.  https://doi.org/10.1111/j.1574-6968.2007.00897.x
  5. 5.
    Cobo E.R., Campero C. Manuel, 2002. Nuevos Aspectos Inmunologicos y Vacunales de la Tricomoniasis Bovina. Revista de Medicina Veterinaria. 83, 203–208 (In Spanish)Google Scholar
  6. 6.
    Diamond L.S., 1957. The Establishment of Various Trichomonads of Animals and Man in Axenic Cultures. Journal of Parasitolology, 43, 488–490.  https://doi.org/10.2307/3274682
  7. 7.
    Felleisen R.S.J., Lambelet N., Bachmann P., Nicolet J., Müller N., Gottstein B., 1998. Detection of Tritrichomonas foetus by PCR and DNA Enzyme Immunoassay Based on rRNA Gene Unit Sequences. Journal of Clinical Microbiology, 2, 513–519Google Scholar
  8. 8.
    Filho R.B. de O., Malta K.C., Borges J. de M., de Oliveira P.R.F., Filho G.J. dos S., Nascimento G.G., Mota R.A., Júnior J.W.P., 2018. Prevalence and risk factors associated with Tritrichomonas foetus infection in cattle in the state of Paraíba, Brazil. Acta Parasitologica, 63, 346–353.  https://doi.org/10.1515/ap-2018-0039
  9. 9.
    Forbes G.L., Drayton R., Forbes G.D., 2015. A case of metronidazole-resistant Trichomonas vaginalis in pregnancy. International Journal of STD & AIDS. 0, 1–3.  https://doi.org/10.1177/0956462415601295
  10. 10.
    Gookin J.L., Copple C.N., Papich M.G., Poore M.F., Stauffer S.H., Birkenheuer A.J., Twedt D.C., Levy M.G., 2006. Efficacy of ronidazole for treatment of feline Tritrichomonas foetus infection. Journal of Veterinary Internal Medicine, 20, 536–543.  https://doi.org/10.1892/0891-6640(2006)20%5b536:eorfto%5d2.0.co;2
  11. 11.
    Gookin J.L., Stauffer S.H., Dybas D., Cannon D.H., 2010. Documentation of In Vivo and In Vitro Aerobic Resistance of Feline Tritrichomonas foetus Isolates to Ronidazole. Journal of Veterinary Internal Medicine, 24, 1003–1007.  https://doi.org/10.1111/j.1939-1676.2010.0534.x
  12. 12.
    Kather E.J., Marks S.L., Kass P.H., 2007. Determination of the in vitro susceptibility of feline tritrichomonas foetus to 5 antimicrobial agents. Journal of Veterinary Internal Medicine, 21, 966–970.  https://doi.org/10.1111/j.1939-1676.2007.tb03050.x
  13. 13.
    Kulda J., 1999. Trichomonads, hydrogenosomes and drug resistance. International Journal for Parasitology, 29, 199–212.  https://doi.org/10.1016/s0020-7519(98)00155-6
  14. 14.
    Kulda J., Čerkasov J., Demeš P., Čerkasovová A., 1984. Tritrichomonas foetus: Stable anaerobic resistance to metronidazole in vitro . Experimental Parasitology, 57, 93–103.  https://doi.org/10.1016/0014-4894(84)90068-7
  15. 15.
    Lindmark D.G., Mueller M., 1976. Antitrichomonad action, mutagenicity, and reduction of metronidazole and other nitroimidazoles. Antimicrobial Agents and Chemotherapy, 10, 476–482.  https://doi.org/10.1128/aac.10.3.476
  16. 16.
    Love D., Fajt V.R., Hairgrove T., Jones M., Thompson J.A., 2017. Metronidazole for the treatment of Tritrichomonas foetus in bulls. BMC Journal of Veterinary Research, 13, 1–6.  https://doi.org/10.1186/s12917-017-0999-2
  17. 17.
    Mardones F.O., Perez A.M., Martínez A., Carpenter T.E., 2008. Risk factors associated with Tritrichomonas foetus infection in beef herds in the Province of Buenos Aires, Argentina. Veterinary Parasitolology, 153, 231–237.  https://doi.org/10.1016/j.vetpar.2008.01.038
  18. 18.
    Mariante R.M., Lopes L.C., Benchimol M., 2004. Tritrichomonas foetus pseudocysts adhere to vaginal epithelial cells in a contact-dependent manner. Journal of Parasitology Research, 92, 303–12.  https://doi.org/10.1007/s00436-003-1026-z
  19. 19.
    Matini M., Maghsood A.H., Mohebali M., Rabiee S., Fallah M., Rezaie S., Rezaeian M., 2016. In vitro susceptibility of Iranian isolates of Trichomonas vaginalis to metronidazole. Iran. Journal of Parasitology, 11, 46–51.Google Scholar
  20. 20.
    McLoughlin D.K., 1967. Drug tolerance by Tritrichomonas foetus. J. Parasitol. 53, 646–648.  https://doi.org/10.2307/3276735
  21. 21.
    Meingassner J.G., Mieth H., Czok R., Lindmark D.G., Müller M., 1978. Assay conditions and the demonstration of nitroimidazole resistance in Tritrichomonas foetus. Antimicrobial Agents and Chemotherapy, 13, 1–3.  https://doi.org/10.1128/aac.13.1.1
  22. 22.
    Meri T., Jokiranta T.S., Suhonen L., Meri S., 2000. Resistance of Trichomonas vaginalis to metronidazole: Report of the first three cases from Finland and optimization of in vitro susceptibility testing under various oxygen concentrations. Journal of Clinical Microbiology, 38, 763–767.Google Scholar
  23. 23.
    Pereira-Neves A., Benchimol M., 2009. Tritrichomonas foetus: budding from multinucleated pseudocysts. Protist, 160, 536–51.  https://doi.org/10.1016/j.protis.2009.05.001
  24. 24.
    Pereira-Neves A., Campero C.M., Martínez A., Benchimol M., 2011. Identification of Tritrichomonas foetus pseudocysts in fresh preputial secretion samples from bulls. Veterinary. Parasitology, 175, 1–8.  https://doi.org/10.1016/j.vetpar.2010.10.007
  25. 25.
    Pereira-neves A., Consort Ribeiro K., Benchimol M., 2003. Pseudocysts in Trichomonads—New Insights. Protist, 154, 313–329.  https://doi.org/10.1078/143446103322454095
  26. 26.
    Rae D.O., Crews J.E., Greiner E.C., Donovan G.A., 2004. Epidemiology of Tritrichomonas foetus in beef bull populations in Florida. Theriogenology, 61, 605–618.  https://doi.org/10.1016/s0093-691x(03)00236-x
  27. 27.
    Samuelson J., 1999. Why metronidazole is active against both bacteria and parasites. Antimicrobial Agents and Chemotherapy, 43, 1533–1541.  https://doi.org/10.1128/aac.43.7.1533
  28. 28.
    Upcroft J.A., Upcroft P., 2001. Drug Susceptibility Testing of Anaerobic Protozoa Drug Susceptibility Testing of Anaerobic Protozoa. Antimicrobial Agents and Chemotherapy, 45, 1810–1814. https://doi.org/10.1128/aac.45.6.18101814.2001Google Scholar
  29. 29.
    Uzlikova M., Nohynkova E., 2014. The effect of metronidazole on the cell cycle and DNA in metronidazole-susceptible and -resistant Giardia cell lines. Molecular and Biochemical. Parasitology, 198, 75–81.  https://doi.org/10.1016/j.molbiopara.2015.01.005
  30. 30.
    Vázquez F., José García M., Pérez F., Palacio V., 2001. Trichomonas vaginalis: tratamiento y resistencia a nitroimidazoles. Enfermedades Infecciosas y Microbiología Clínica, 19, 114–124.  https://doi.org/10.1016/s0213-005x(01)72580-3

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2019

Authors and Affiliations

  • María Belén Rivero
    • 1
    • 2
  • Melchor Emilio Luque
    • 1
    • 2
    • 3
  • Maria Eugenia Abdala
    • 1
    • 2
    • 3
  • Bruno Elías Luna
    • 1
  • David Di Lullo
    • 1
  • Ignacio Eduardo Echaide
    • 4
  • Pedro Gabriel Carranza
    • 1
    • 2
    • 3
  • Fernando David Rivero
    • 1
    • 2
    • 3
    Email author
  1. 1.Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSESantiago del EsteroArgentina
  2. 2.Facultad de Ciencias Médicas (FCM-UNSE)Santiago del EsteroArgentina
  3. 3.Facultad de Agronomía y Agroindustrias (FAyA-UNSE)Santiago del EsteroArgentina
  4. 4.EEA-Rafaela, INTARafaelaArgentina

Personalised recommendations