Acta Parasitologica

, Volume 59, Issue 2, pp 301–304 | Cite as

Confirming Hypoderma tarandi (Diptera: Oestridae) human ophthalmomyiasis by larval DNA barcoding

  • Bjørn Arne Rukke
  • Symira Cholidis
  • Arild Johnsen
  • Preben Ottesen
Original Paper


DNA barcoding is a practical tool for species identification, when morphological classification of an organism is difficult. Herein we describe the utilisation of this technique in a case of ophthalmomyiasis interna. A 12-year-old boy was infested during a summer holiday in northern Norway, while visiting an area populated with reindeer. Following medical examination, a Diptera larva was surgically removed from the boy’s eye and tentatively identified from its morphological traits as Hypoderma tarandi (L.) (Diptera: Oestridae). Ultimately, DNA barcoding confirmed this impression. The larval cytochrome c oxidase subunit 1 (COI) DNA sequence was matched with both profiles of five adult H. tarandi from the same region where the boy was infested, and other established profiles of H. tarandi in the Barcode of Life Data Systems (BOLD) identification engine.


Ophthalmomyiasis species identification DNA barcoding Hypoderma tarandi 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson J.R. 2006. Oestrid myiasis in humans. In: (Eds. D.D. Coldwell, M.J.R. Hall and P.J. Scholl) The oestrid fliesbiology, host-parasite relationships, impact and management. CABI Publishing, Oxford, UK, 201–209.Google Scholar
  2. Entezari S.M., Key L., Athari A., Ramin S. 2004. Ophthalmomyiasis interna posterior: Report of a case with lens subluxation and multiple retinal breaks. Annals of Ophthalmology, 36, 129–131.Google Scholar
  3. Ferrar P. 1987. A guide to the breeding habits and immature stages of Diptera Cyclorrhapha. E. J. Brill, Leiden, Netherlands, 907 pp.Google Scholar
  4. Francesconi F., Lupi O. 2012. Myiasis. Clinical Microbiology Reviews, 25, 79–105. DOI: 10.1128/CMR.00010-11.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Frézal L., Leblois R. 2008. Four years of DNA barcoding: Current advances and prospects. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 8, 727–736. DOI: 10.1016/j.meegid.2008.05.005.PubMedCrossRefGoogle Scholar
  6. Hajibabaei M., Janzen D.H., Burns J.M., Hallwachs W., Hebert P.D.N. 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 103, 968–971. DOI: 10.1073/pnas.0510466103.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Hebert P.D.N, Cywinska A., Ball S.L., deWaard J.R. 2003a. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B, 270, 313–321. DOI: 10.1098/rspb.2002.2218.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Hebert P.D.N., Ratnasingham S., deWaard J.R. 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B (Supplement), 270, S96–99 (2003).CrossRefGoogle Scholar
  9. Kan B., Otranto D., Fossen K., Åsbakk K. 2012. Dermal swellings and ocular injury after exposure to reindeer. The New England Journal of Medicine, 367, 2456–2457. DOI: 10.1056/NEJMc1201434.PubMedCrossRefGoogle Scholar
  10. Kan B., Åsbakk K., Fossen K., Nilssen A., Panadero R., Otranto D. 2013. Reindeer warble fly-associated human myiasis, Scandinavia. Emerging Infectious Diseases, 19, 830–832. DOI: 10.3201/eid1905.130145.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Kearney M.S., Nilssen A.C., Lyslo A., Syrdalen P., Dannevig, L. 1991. Ophthalmomyiasis caused by the reindeer warble fly larva. Journal of Clinical Pathology, 44, 276–284.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Lagacé-Wiens P.R.S., Dookeran R., Skinner S., Leicht R., Colwell D.D., Galloway T. D. 2008. Human ophthalmomyiasis interna caused by Hypoderma tarandi, Northern Canada. Emerging Infectious Diseases, 14, 64–66. DOI: 10.3201/eid1401.07 0163.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Otranto D., Colwell D.D., Traversa D., Stevens J.R. 2003. Species identification of Hypoderma affecting domestic and wild ruminants by morphological and molecular characterization. Medical and Veterinary Entomology, 17, 316–325. DOI: 10.1046/j.1365-2915.2003.00446.x.PubMedCrossRefGoogle Scholar
  14. Otranto D., Traversa D., Colwell D.D., Guan G., Giangaspero A., Boulard C., Yin H. 2004. A third species of Hypoderma (Diptera: Oestridae) affecting cattle and yaks in China: molecular and morphological evidence. Journal of Parasitology, 90, 958–965.PubMedCrossRefGoogle Scholar
  15. Ottesen P.S. 1993. Norwegian insect families and their species number. Norwegian Institute for Nature Research. Report No.: NINA Utredning 55, Trondheim, Norway, 40 pp.Google Scholar
  16. Syrdalen P., Nitter T., Mehl R. 1982. Ophthalmomyiasis interna posterior: Report of case caused by the reindeer warble fly larva and review of previous reported cases. The British Journal of Ophthalmology, 66, 589–593.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Zumpt F. 1965. Myiasis in man and animals in The Old World: a textbook for physicians, veterinarians and zoologists. Butterworths, London, UK, 276 pp.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Bjørn Arne Rukke
    • 1
  • Symira Cholidis
    • 2
  • Arild Johnsen
    • 3
  • Preben Ottesen
    • 1
  1. 1.Department of Pest ControlNorwegian Institute of Public HealthOsloNorway
  2. 2.Department of OphthalmologyOslo University HospitalOsloNorway
  3. 3.Natural History MuseumUniversity of OsloOsloNorway

Personalised recommendations