Advertisement

Acta Parasitologica

, Volume 59, Issue 2, pp 213–218 | Cite as

The effect of initial dose on the recovery and final yields of Heterorhabditis megidis (Rhabditida: Heterorhabditidae) in larvae of the great wax moth, Galleria mellonella

  • Dorota Tumialis
  • Elżbieta Pezowicz
  • Anna Mazurkiewicz
  • Iwona Skrzecz
  • Elżbieta Popowska-Nowak
  • Agnieszka Petrykowska
Original Paper

Abstract

The aim of this study was to determine the effect of different initial doses of the infective juveniles (IJs) (50 IJs, 200 IJs, 1000 IJs) of Heterorhabditis megidis Poinar (Rhabditida: Heterorhabditidae) strain IsM15/09 on recovery, final yields and percent final yields in larvae Galleria mellonella ( L.). Percent recovery was not directly related to initial dose. Final yields also did not change with the initial dose. However, percent yields was highly negatively correlated with initial dose of nematodes and was the highest with the 50 IJs dose. Additional point of the study was to investigate whether the nematodes are able to produce progeny from one hermaphroditic individual. The results showed that the invasive larvae resumed growth and transformed into hermaphroditic individuals that reproduced without cross-fertilisation.

Keywords

Heterorhabditis megidis Galleria mellonella initial dose recovery final yields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baliadi Y., Kondo E., Yoshiga T. 2009. The continual forming and contribution of infective juveniles produced via endotokia matricida of entomopathogenic nematodes in the family of Steinernematidae and Heterorhabditidae. Indonesian Journal of Agricultural Science, 10, 26–33.Google Scholar
  2. Boff M.I.C., Wiegers G.L., Gerritsen L.J.M., Smits P.H. 2000. Development of the entomopathogenic nematode Heterorhabditis megidis strain NLH-E 87.3 in Galleria mellonella. Nematology, 2, 303–308. DOI: 10.1163/156854100509178.CrossRefGoogle Scholar
  3. Boff M.I.C., Wiegers G.L., Smits P.H. 2001. Host influences on the pathogenicity of Heterorhabditis megidis. BioControl, 46, 91–103. DOI: 10.1590/S1519-69842013000200003.CrossRefGoogle Scholar
  4. Bonifassi E., Fischer-Le Saux M., Boemare N., Lanois A., Laumond C., Smart G. 1999. Gnotobiological study of infective juveniles and symbionts of Steinernema scapterisci: A model to clarify the concept of the natural occurrence of monoxenic associations in entomopathogenic nematodes. Journal of Invertebrate Pathology, 74, 164–172. DOI: 10.1098/rspb.2001.1795.PubMedCrossRefGoogle Scholar
  5. Burnell A.M., Stock S.P. 2000. Heterorhabditis, Steinernema and their bacterial symbionts lethal pathogens of insects. Nematology, 2, 31–42. DOI: 10.1603/029.102.0348.CrossRefGoogle Scholar
  6. Ehlers R.U., Niemann I., Hollmer S., Strauch O., Jende D., Shanmugasundaram M., Mehta U.K., Easwaramoorthy S.K., Burnell A.M. 2000. Mass production potential of the bactohelminthic biocontrol complex Heterorhabditis indica — Photorhabdus luminescens. Biocontrol Science and Technology, 10, 607–616. DOI: 10.1007/s10123-003-0144-x.CrossRefGoogle Scholar
  7. Elawad S.A., Gowen S.R., Hague N.G.M. 1999. The life cycle of Steinernema abbasi and S. riobrave in Galleria mellonella. Nematology, 1, 762–764.CrossRefGoogle Scholar
  8. Fan X., Hominick W.M. 1991. Efficiency of the Galleria (wax moth) baiting technique for recovering infective stages of entomopathogenic rhabditidis (Steinernematidae and Heterorhabditidae) from sand and soil. Revue de Nématologie, 14, 381–387.Google Scholar
  9. Flanders K.L., Miller J.M., Shields E.J. 1996. In vivo production of Heterorhabditis bacteriophora ‘Oswego’ (Rhabditida: Heterorhabditidae), a potential biological control agent for soilinhabiting insects in temperate regions. Journal of Economic Entomology, 89, 373–380.Google Scholar
  10. Gerritsen L.J.M., Wiegers G.L., Smits P.H. 1998. Pathogenicity of New Combinations of Heterorhabditis spp. and Photorhabdus luminescens against Galleria mellonella and Tipula olerace. Biological Control, 13, 9–15.CrossRefGoogle Scholar
  11. Han R.C. 1996. The effects of inoculum size on yield of Steinernema carpocapsae and Heterorhabditis bacteriophora in liquid culture. Nematologica, 42, 546–553. DOI: 10.1163/004625996X 00045.CrossRefGoogle Scholar
  12. Kaya H.K., Stock S.P. 1997. Techniques in insect nematology. In: (Ed. L.A. Lacey) Manual of techniques in insect pathology. Academic Press, London, 281–324.CrossRefGoogle Scholar
  13. Koppenhöfer A.M., Grewal P.S., Fuzy E.M. 2007. Differences in penetration routes and establishment rates of four entomopathogenic nematode species into four white grub species. Journal of Invertebrate Pathology, 94, 184–195. DOI: 10.1016/j.jip.2006.10.005.PubMedCrossRefGoogle Scholar
  14. Lacey L.A., Frutos R., Kaya H.K., Vail P. 2001. Insect Pathogens as Biological Control Agents: Do they Have a Future?. Biological Control, 21, 230–248. DOI: 10.1006/bcon.2001.0938.CrossRefGoogle Scholar
  15. Li X.Y., Cowles R.S., Cowles E.A., Gaugler R., Cox-Foster D.L. 2007. Relationship between the successful infection by entomopathogenic nematodes and the host immune response. International Journal of Parasitology, 37, 365–374. DOI: 10.1016/j.ijpara.2006.08.009.PubMedCrossRefGoogle Scholar
  16. Lewis E.E., Campbell J., Griffin C., Kaya H., Peters A. 2006. Behavioral ecology of entomopathogenic nematodes. Biological Control, 38, 66–79. DOI: 10.1016/j.biocontrol.2005.11.007.CrossRefGoogle Scholar
  17. Mannion C.M., Jansson R.K. 1993. Infectivity of five entomopathogenic nematodes to the sweetpotato weevil, Cylas formicarius (F.), (Coleoptera: Apionidae) in three experimental arenas. Journal of Invertebrate Pathology, 62, 29–36. DOI: 10.1006/jipa.1993.1070.CrossRefGoogle Scholar
  18. Mason J.M., Hominick W.M. 1995. The effect of temperature on infection, development and reproduction of Heterorhabditis. Journal of Helminthology, 69, 37–347. DOI: 10.1017/S00 22149X00014929.CrossRefGoogle Scholar
  19. Saunders J.E., Webster J.M. 1999. Temperature Effects on Heterorhabditis megidis and Steinernema carpocapsae. Infectivity to Galleria mellonella. Journal of Nematology, 31, 299–304.PubMedCentralPubMedGoogle Scholar
  20. Selvan S., Campbell J.F., Gaugler R. 1993. Density — depndent effects on entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) within an insect host. Journal of Invertebrate Pathology, 62, 278–274. DOI: 10.1006/jipa.1993.1113.CrossRefGoogle Scholar
  21. Shapiro-Ilan D.I., Gaugler R. 2002. Production technology for entomopathogenic nematodes and their bacterial symbionts. Journal of Industrial Microbiology and Biotechnology, 28, 137–146. DOI: 10.1038/sj/jim/7000230.PubMedCrossRefGoogle Scholar
  22. Simões N., Caldas C., Rosa J.S., Bonifassi E., Laumond C. 2000. Pathogenicity Caused by High Virulent and Low Virulent Strains of Steinernema carpocapsae to Galleria mellonella. Journal of Invertebrate Pathology, 75, 47–54. DOI: 10. 1006/jipa.1999.4899.PubMedCrossRefGoogle Scholar
  23. Wang J., Bedding R.A. 1996. Population development of Heterorhabditis bacteriophora and Steinernema carpocapsae in the larvae of Galleria mellonella. Fundamental and Applied Nematology, 19, 363–367.Google Scholar
  24. White G.F. 1929. A method for obtaining infective nematode larvae from cultures. Science, 66, 302–303. DOI: 10.1126/science. 66.1709.302-a.CrossRefGoogle Scholar
  25. Zervos S., Johnson S.C., Webster J.M. 1991. Effect of temperature and inoculum size on reproduction and development of Heterorhabditis heliothidis and Steinernema glaseri (Nematoda: Rhabditoidea) in Galleria mellonella. Canadian Journal of Zoology, 69, 1261–1264. DOI: 10.1139/z91-177.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Dorota Tumialis
    • 1
  • Elżbieta Pezowicz
    • 1
  • Anna Mazurkiewicz
    • 1
  • Iwona Skrzecz
    • 2
  • Elżbieta Popowska-Nowak
    • 3
  • Agnieszka Petrykowska
    • 1
  1. 1.Faculty of Animal Sciences, Department of Animal Environment BiologyWarsaw University of Life Sciences — SGGWWarsawPoland
  2. 2.Department of Forest Protection, Sękocin StaryForest Research InstituteRaszynPoland
  3. 3.Faculty of Biology and Environmental SciencesCardinal Stefan Wyszynski UniversityWarsawPolan

Personalised recommendations