Acta Parasitologica

, Volume 59, Issue 1, pp 173–183 | Cite as

Parasites of the head of Scomber colias (Osteichthyes: Scombridae) from the western Mediterranean Sea

  • Salvatore Mele
  • Maria Grazia Pennino
  • Maria Cristina Piras
  • José María Bellido
  • Giovanni Garippa
  • Paolo Merella
Research Note


The metazoan parasite assemblage of the head of 30 specimens of the Atlantic chub mackerel (Scomber colias) from the western Mediterranean Sea was analysed. Eight species of parasites were found, four mazocraeid monogeneans: Grubea cochlear (prevalence = 10%), Kuhnia scombercolias (59%), K. scombri (52%), Pseudokuhnia minor (86%); three didymozoid trematodes: Nematobothrium cf. faciale (21%), N. filiforme (41%), N. scombri (7%); and one laerneopodid copepod: Clavelissa scombri (7%). Results were compared with previously published data from 14 localities of the eastern Mediterranean Sea and the Atlantic Ocean, using non-parametric univariate and multivariate analyses, and the whole parasite fauna of S. colias was compared with that of the congeners (S. australasicus, S. japonicus and S. scombrus). Parasites showed to reflect the biogeographical and phylogenetic history of host. From a methodological point of view, the use of both non-parametric univariate and multivariate techniques proved to be effective tools to detect dissimilarities between parasite assemblages.


Didymozoidae Lernaeopodidae Mazocraeidae Scomber colias Mediterranean Sea Sardinia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akmirza A. 2003. Distribution of parasite fauna of chub mackerel in Aegean and Mediterranean Sea. Turkish Journal of Marine Sciences, 9, 187–195.Google Scholar
  2. Alves D.R., Luque J.L., Abdallah. V.D. 2003. Metazoan parasites of chub mackerel, Scomber japonicus (Osteichthyes: Scombridae), from the coastal zone of the State of Rio de Janeiro, Brazil. Brazilian Journal of Veterinary Parasitology, 12, 164–170.Google Scholar
  3. Baylis H.A. 1938. On two species of the trematode genus Didymozoon from the mackerel. Journal of the Marine Biological Association of the United Kingdom, 22, 485–492.CrossRefGoogle Scholar
  4. Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83, 575–583. DOI: 10.2307/3284227.PubMedCrossRefGoogle Scholar
  5. Catanese G., Manchado M., Infante C. 2010. Evolutionary relatedness of mackerels of the genus Scomber based on complete mitochondrial genomes: strong support to the recognition of Atlantic Scomber colias and Pacific Scomber japonicus as distinct species. Gene, 452, 35–43. DOI: 10.1016/j.gene.2009.12.004.PubMedCrossRefGoogle Scholar
  6. Cheng J., Tianxiang G., Zhenqing M., Takashi Y. 2011. Molecular phylogeny and evolution of Scomber (Teleostei: Scombridae) based on mitochondrial and nuclear DNA sequences. Chinese Journal of Oceanology and Limnology, 29, 297–310. DOI: 10.1007/s00343-011-0033-7.CrossRefGoogle Scholar
  7. Costa G., Freitas N., Dellinger T.H., MacKenzie K. 2007. Gill monogeneans of the chub mackerel, Scomber japonicus from Madeiran waters of the Atlantic Ocean, Portugal. Journal of Helminthology, 81, 33–38. DOI: 10.1017/S0022149X07207333.PubMedCrossRefGoogle Scholar
  8. Costa G., Cavallero S., D’Amelio S., Paggi L., Garcia Santamaria M.T., Borges Perera C., João Santos M., Khadem M. 2011. Helminth parasites of the Atlantic chub mackerel, Scomber colias Gmelin, 1789 from Canary Islands, Central North Atlantic, with comments on their relations with other Atlantic regions. Acta Parasitologica, 56, 98–104. DOI: 10.2478/s11686-011-0006-1.CrossRefGoogle Scholar
  9. Cremonte F., Sardella N.H. 1997. The parasito fauna of Scomber japonicus Houttuyn, 1782 (Pisces: Scombridae) in two zones of the Argentine Sea. Fisheries Research, 31, 1–9. DOI: 10.1016/S0165-7836(97)00024-6.CrossRefGoogle Scholar
  10. Cressey R., Cressey H.B. 1980. Parasitic copepods of mackerel and tuna-like fishes (Scombridae) of the world. Smithsonian Contributions to Zoology, 311, 1–186.Google Scholar
  11. FAO 2011. FishStatJ: Universal software for fishery statistical time series. FAO Fisheries and Aquaculture Department, Statistics and Information Service.Google Scholar
  12. Culurgioni J., Mele S., Merella P., Addis P., Figus V., Cau A., Karakulak F.S., Garippa G. 2014. Metazoan gill parasites of the Atlantic bluefin tuna Thunnus thynnus (Linnaeus) (Osteichthyes: Scombridae) from the Mediterranean and their possible use as biological tags. Folia parasitologica, (in press). DOI: 10.14411/fp.2014.011.Google Scholar
  13. Gargouri Ben Abdalah L., Elbohli S., Maamouri F. 2010. Digenean diversity in labrid fish from the Bay of Bizerte in Tunisia. Journal of Helminthology, 84, 27–33. DOI: 10.1051/parasite/2012192129.PubMedCrossRefGoogle Scholar
  14. Garibaldi L., Caddy J.F. 1998. Biogeographic characterization of Mediterranean and Black Seas faunal provinces using GIS procedures. Ocean and Coastal Management, 39, 211–227. DOI: 10.1016/S0964-5691(98)00008-8.CrossRefGoogle Scholar
  15. Gibson D.I., MacKenzie K., Cottle J. 1981. Halvorsenius exilis gen. et. sp. nov., a new didymozoid trematode from the mackerel Scomber scombrus L. Journal of Natural History, 15, 917–929. DOI: 10.1080/00222938100770681.CrossRefGoogle Scholar
  16. Gibson D.I., Bray R.A., Harris E.A (Compilers) 2005. Host-Parasite Database of the Natural History Museum. London. World Wide Web electronic publication. Available from: Scholar
  17. Hayward C.J., Perera K.M.L., Rohde K. 1998. Assemblages of ectoparasites of a pelagic fish, slimy mackerel (Scomber australasicus), from south-eastern Australia. International Journal for Parasitology, 28, 263–273. DOI: 10.1016/S0020-7519(97)00186-0.PubMedCrossRefGoogle Scholar
  18. Ichihara A., Kamegai S., Machida M. 1968. Parasitic helminths of mackerel, Pneumatophorus japonicus (Houttuyn). Research Bulletin of the Meguro Parasitological Museum, 2, 45–60.Google Scholar
  19. Kabata Z. 1979. Parasitic copepoda of British fishes. Ray Society Publs, 152: 1–468. The Ray Society, London.Google Scholar
  20. Lester R.J.G., Barnes A., Habib G. 1985. Parasites of skipjack tuna, Katsuwonus pelamis: fishery implications. Fishery Bulletin, 83, 343–356.Google Scholar
  21. Manca B., Burca M., Giorgetti A., Coatanoan C., Garcia M.J., Iona A. 2004. Physical and biochemical averaged vertical profiles in the Mediterranean regions: an important tool to trace the climatology of water masses and to validate incoming data from operational oceanography. Journal of Marine Systems, 48, 83–116. DOI: 10.1016/j.jmarsys.2003.11.025.CrossRefGoogle Scholar
  22. Marzoug D., Boutiba Z., Gibson D.I., Pérez-del-Olmo A., Kostadinova A. 2012. Descriptions of digeneans from Sardina pilchardus (Walbaum) (Clupeidae) off the Algerian coast of the western Mediterranean, with a complete list of its helminth parasites. Systematic Parasitology, 81, 169–86. DOI: 10.1007/s11230-011-9335-6.PubMedCrossRefGoogle Scholar
  23. Mele S., Macías D., Gómez M.J., Garippa G., Alemany F., Merella P. 2012. Metazoan parasites on the gills of the skipjack tuna Katsuwonus pelamis (Osteichthyes: Scombridae) from the Alboran Sea (western Mediterranean Sea). Diseases of Aquatic Organisms, 97, 219–225. DOI: 10.3354/dao02421.PubMedCrossRefGoogle Scholar
  24. Nikolaeva V.M. 1980. On the Black Sea Didymozoidae, species composition, morphology and distribution. Ekologiya Morya, 2, 81–85.Google Scholar
  25. Oksanen J. 2011. Multivariate analysis of ecological communities in R: Vegan tutorial. World wide web electronic publication. Available from:, accessed 23 January 2013.Google Scholar
  26. Öktener A., Trilles J.P. 2009. Four parasitic copepods on marine fish (Teleostei and Chondrichthyes) from Turkey. Acta Adriatica, 50, 121–128.Google Scholar
  27. Oliva M.E., Valdivia I.M., Costa G., Freitas N., Pinheiro De Carvalho M.A., Sanchez Z.L., Luque J.L. 2008. What can metazoan parasites reveal about the taxonomy of Scomber japonicus Houttuyn in the coast of South America and Madeira Islands. Journal of Fish Biology, 72, 545–554. DOI: 10.1111/j.1095-8649.2007.01725.x.CrossRefGoogle Scholar
  28. Pascual S., Abollo E., Azevedo C. 2006. Host-parasite interaction of a muscle-infecting didymozoid in the Atlantic mackerel Scomber scombrus L. ICES Journal of Marine Science, 63, 169–175. DOI: 10.1016/j.icesjms.2005.08.010.CrossRefGoogle Scholar
  29. Perera K.M.L. 1994. Light and electron microscopic study of the pathology of a species of didymozoid (Trematoda, Digenea) infecting the gill arches of Scomber australasicus (Teleostei, Scombridae). Diseases of Aquatic Organisms, 18, 119–127. DOI: 10.3354/dao02421.CrossRefGoogle Scholar
  30. R Development Core Team 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.Google Scholar
  31. Reiczigel J., Rózsa L. 2005. Quantitative Parasitology 3.0. Budapest. Distributed by the authors.Google Scholar
  32. Robinson A.R., Wayne G.L., Theocharis A., Lascaratos A. 2001. Mediterranean Sea Circulation. Encyclopedia of Ocean Sciences, 3, 1689–1705. DOI: 10.1006/rwos.2001.0376.CrossRefGoogle Scholar
  33. Rohde K. 1989. Kuhnia sprostonae Price, 1961 and K. scombercolias Nasir and Fuentes Zambrano, 1983 (Monogenea: Mazocraeidae) and their microhabitats on the gills of Scomber spp. (Teleostei: Scombridae), and geographical distribution of gill Monogenea of Scomber spp. Systematic Parasitology, 14, 93–100. DOI: 10.1007/BF00016903.CrossRefGoogle Scholar
  34. Rohde K., Watson N. 1985. Morphology and geographical variation of Pseudokuhnia minor n. g., n. comb. (Monogenea: Polyopisthocotylea). International Journal for Parasitology, 15, 557–567. DOI: 10.1016/0020-7519(85)90053-0.CrossRefGoogle Scholar
  35. Rohde K, Hayward CJ. 2000. Oceanic barriers as indicated by scombrid fishes and their parasites. International Journal for Parasitology, 30, 579–583. DOI: 10.1016/S0020-7519(00)00023-0.PubMedCrossRefGoogle Scholar
  36. Romuk-Wodoracki D. 1988. Parasitic fauna of Atlantic mackerel (Scomber scombrus L.) from the fishing grounds of Cape Hatteras. Acta Ichthyologica et Piscatoria, 13, 49–60.Google Scholar
  37. Shukhgalter O.A. 2004. Parasite fauna of the chub mackerel (Scombridae: Scomber japonicus Houttuyn, 1782) in the central eastern Atlantic Ocean (the Atlantic coast of the North Africa and the Azores banks). Parasitologiya, 38, 160–170 (in Russian).Google Scholar
  38. Solonchenko A. I., Bodyanitski V.A. 1968. Parasite fauna of Scomber colias from the Atlantic Ocean near the South western coast of Africa. “Naukova Dumka”, Biology of seas. No. 14. Parasites of marine animals. Kiev. pp. 90–95.Google Scholar
  39. Somdal O., Schram T.A. 1992. Ectoparasites on northeast Atlantic mackerel (Scomber scombrus L.) from western and North Sea stocks. Sarsia, 77, 20–31.Google Scholar
  40. Velasco E.V., Del Arbol J., Baro J., Sobrino I. 2011. Age and growth of the Spanish chub mackerel Scomber colias off southern Spain: a comparison between samples from the NE Atlantic and the SW Mediterranean. Revista de Biología Marina y Oceanografía, 46, 27–34.CrossRefGoogle Scholar
  41. Verneau O., Du Preez L., Badets M. 2009. Lessons from parasitic flatworms about evolution and historical biogeography of their vertebrate hosts. Comptes Rendus Biologies, 332, 149–158. DOI: 10.1016/j.crvi.2008.08.019.PubMedCrossRefGoogle Scholar
  42. Yamaguti S. 1970. Digenetic trematodes of Hawaiian fishes. Keigaku Publishing Co. Tokyo.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Salvatore Mele
    • 1
  • Maria Grazia Pennino
    • 2
  • Maria Cristina Piras
    • 1
  • José María Bellido
    • 2
  • Giovanni Garippa
    • 1
  • Paolo Merella
    • 1
  1. 1.Parassitologia e Malattie Parassitarie, Dipartimento di Medicina VeterinariaUniversità di SassariSassariItaly
  2. 2.Instituto Español de OceanografíaCentro Oceanográfico de MurciaSan Pedro del PinatarSpain

Personalised recommendations