Acta Parasitologica

, Volume 58, Issue 4, pp 441–452 | Cite as

A widespread distribution for Arostrilepis tenuicirrosa (Eucestoda: Hymenolepididae) in Myodes voles (Cricetidae: Arvicolinae) from the Palearctic based on molecular and morphological evidence: historical and biogeographic implications

  • Kurt E. Galbreath
  • Kristina Ragaliauskaite
  • Leonas Kontrimavichus
  • Arseny A. Makarikov
  • Eric P. Hoberg
Original Paper


Hymenolepidid cestodes in Myodes glareolus from Lithuania and additional specimens originally attributed to Arostrilepis horrida from the Republic of Belarus are now referred to A. tenuicirrosa. Our study includes the first records of A. tenuicirrosa from the European (western) region of the Palearctic, and contributes to the recognition of A. horrida (sensu lato) as a complex of cryptic species distributed broadly across the Holarctic. Specimens of A. tenuicirrosa from Lithuania were compared to cestodes representing apparently disjunct populations in the eastern Palearctic based on structural characters of adult parasites and molecular sequence data from nuclear (ITS2) and mitochondrial (cytochrome b) genes. Morphological and molecular data revealed low levels of divergence between eastern and western populations. Phylogeographic relationships among populations and host biogeographic history suggests that limited intraspecific diversity within A. tenuicirrosa may reflect a Late Pleistocene transcontinental range expansion from an East Asian point of origin.


Hymenolepididae Arostrilepis tenuicirrosa Beringia Eurasia Arvicolinae Myodes glareolus phylogeography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson N.I., Abramov A.V., Baranova G.I. 2009. New species of red-backed vole (Mammalia: Rodentia: Cricetidae) in fauna of Russia: molecular and morphological evidences. Proceedings of the Zoological Institute RAS, 313, 3–9.Google Scholar
  2. Asakawa M., Tenora F., Koubkova B. 2002. Arostrilepis horrida (Linstow, 1901) (Cestoda: Hymenolepididae) from Eothenomys spp. (Rodentia) in Japan. Biogeography, 4, 51–55.Google Scholar
  3. Baer J.G. 1932. Contribution á la faune helminthologique de Suisse. Revue Suisse de Zoologie, 39, 1–57.Google Scholar
  4. Chaline J., Graf J.-D. 1988. Phylogeny of the Arvicolidae (Rodentia): biochemical and paleontological evidence. Journal of Mammalogy, 69, 22–33.CrossRefGoogle Scholar
  5. Cook J.A., Hoberg E.P., Koehler A., Henttonen H., Wickström L., Haukisalmi V., Galbreath K., Chernyavski F., Dokuchaev N., Lahzuhtkin A., MacDonald S.O., Hope A., Waltari E., Runck A., Veitch A., Popko R., Jenkins E., Kutz S., Eckerlin R. 2005. Beringia: Intercontinental exchange and diversification of high latitude mammals and their parasites during the Pliocene and Quaternary. Mammal Study, 30, S33–S44. DOI: 10.3106/1348-6160(2005)30[33:BIEADO]2.0.CO;2.CrossRefGoogle Scholar
  6. Cook J.A., Runck A.M., Conroy C.J. 2004. Historical biogeography at the crossroads of the northern continents: molecular phylogenetics of red-backed voles (Rodentia: Arvicolinae). Molecular Phylogenetics and Evolution, 30, 767–777. DOI: 10.1016/S1055-7903(03)00248-3.PubMedCrossRefGoogle Scholar
  7. Deffontaine V., Libois R., Kotlík P., Sommer R., Nieberding C., Paradis E., Searle J.B., Michaux J. R. 2005. Beyond the Mediterranean peninsulas: evidence of central European glacial refugia for a temperate forest mammal species, the bank vole (Clethrionomys glareolus). Molecular Ecology, 14, 1727–1739. DOI: 10.1111/j.1365-294X.2005.02506.x.PubMedCrossRefGoogle Scholar
  8. Drummond A., Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. DOI:10.1186/1471-2148-7-214.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Erhardová B. 1958. (Parasitic worms of rodents in Czecho-Slovakia). Čs. Parasitologie, 5, 52–53 (In Czech).Google Scholar
  10. Fedorov K.P. 1986. Patterns of spatial distribution of parasitic worms. Izdatel’stvo Nauka, Novosibirsk, 256 pp. (In Russian).Google Scholar
  11. Genov T. 1984. [Helminths of insectivores and rodents in Bulgaria.] Izdatelstvo na Bulgarskata Akademiya na Naukite, Sofia, 348 pp. (In Bulgarian).Google Scholar
  12. Gulyaev V.D., Chechulin A.I. 1997. Arostrilepis microtis n. sp. (Cyclophyllidea: Hymenolepididae), a new cestode species from Siberian rodents. Research and Reviews in Parasitology, 57, 103–107.Google Scholar
  13. Hasegawa M., Kishino K., Yano T. 1985. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160–174.PubMedCrossRefGoogle Scholar
  14. Haukisalmi V. 1986. Frequency distributions of helminths in microtine rodents in Finnish Lapland. Annales Zoologici Fennici, 23, 141–150.Google Scholar
  15. Haukisalmi V., Hardman L.M., Niemimaa J., Henttonen H. 2007. Taxonomy and genetic divergence of Paranoplocephala kalelai (Tenora, Haukisalmi & Henttonen, 1985) (Cestoda: Anoplocephalidae) in the grey-sided vole Myodes rufocanus in northern Fennoscandia. Acta Parasitologica, 52, 335–341. DOI: 10.2478/s11686-007-0043-y.CrossRefGoogle Scholar
  16. Haukisalmi V., Henttonen H. 1993. Coexistence in helminths of the bank vole Clethrionomys glareolus. I. Patterns of co-occurrence. Journal of Animal Ecology, 62, 221–229.CrossRefGoogle Scholar
  17. Haukisalmi V., Henttonen H. 2001. Biogeography of helminth parasitism in Lemmus Link (Arvicolinae), with the description of Paranoplocephala fellmani n. sp. (Cestoda: Anoplocephalidae) from the Norwegian lemming L. lemmus (Linnaeus). Systematic Parasitology, 49, 7–22.PubMedCrossRefGoogle Scholar
  18. Haukisalmi V., Hardman L.M., Henttonen H., Laakonen J., Niemimaa J., Hardman M., Gubányi A. 2009. Molecular systematics and morphometrics of Anoplocephaloides dentata (Cestoda: Anoplocephalidae) and related species in voles and lemmings. Zoologica Scripta, 38, 199–220.CrossRefGoogle Scholar
  19. Haukisalmi V., Hardman L.M., Foronda P., Feliu C., Laakkonen J., Niemimaa J., Lehtonen J.T., Henttonen H. 2010. Systematic relationships of hymenolepidid cestodes of rodents and shrews inferred from sequences of 28S ribosomal RNA. Zoologica Scripta, 39, 631–641. DOI: 10.1111/j.1463-6409.2010.00444.x.CrossRefGoogle Scholar
  20. Heled J., Drummond A.J. 2010. Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27, 570–580. DOI: 10.1093/molbev/msp274.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hewitt G.M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247–276.Google Scholar
  22. Hoberg E.P., Brooks D.R. 2008. A macroevolutionary mosaic: episodic host-switching, geographical colonization and diversification in complex host-parasite systems. Journal of Biogeography, 35, 1533–1550. DOI: 10.1111/j.1365-2699.2008.01951.x.CrossRefGoogle Scholar
  23. Hoberg E.P., Galbreath K.E., Cook J.A., Kutz S.J., Polley L. 2012. Northern host-parasite assemblages: history and biogeography on the borderlands of episodic climate and environmental transition. Advances in Parasitology, 79, 1–97. DOI: 10.1016/B978-0-12-398457-9.00001-9.PubMedGoogle Scholar
  24. Hoberg E.P., Kutz S.J., Galbreath K.E., Cook J. 2003. Arctic biodiversity: From discovery to faunal baselines-revealing the history of a dynamic ecosystem. Journal of Parasitology, 89, S84–S95.CrossRefGoogle Scholar
  25. Hudson R.R., Kreitman M., Aguadé M. 1987. A test of neutral molecular evolution based on nucleotide data. Genetics, 116, 153–159.PubMedPubMedCentralGoogle Scholar
  26. Huelsenbeck J.P., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.PubMedCrossRefGoogle Scholar
  27. Hwang Y.T., Gardner S.L., Millar J.S. 2007. Hymenolepis horrida (Cestoda: Hymenolepididae) and Catenotaenia peromysci (Cestoda: Anoplocephalidae) in voles from the Canadian Rockies. Comparative Parasitology, 74, 160–163. DOI: 10.1654/4256.1.CrossRefGoogle Scholar
  28. Iwasa M.A., Kartavtseva I.V., Dobrotvorsky A.K., Panov V.V., Suzuki H. 2002. Local differentiation of Clethrionomys rutilus in northeastern Asia inferred from mitochondrial gene sequences. Mammalian Biology, 67, 157–166. DOI: 10.1078/1616-5047-00023.CrossRefGoogle Scholar
  29. Iwasa M.A., Utsumi Y., Nakata K., Kartavtseva I.V., Nevedomskaya I.A., Kondoh N., Suzuki H. 2000. Geographic patterns of cytochrome b and Sry gene lineages in the gray red-backed vole Clethrionomys rufocanus from Far East Asia Including Sakhalin and Hokkaido. Zoological Science, 17,477–484. DOI: 10.2108/0289-0003(2000)17[477:GPOCBA]2.0.CO;2.Google Scholar
  30. Johri G.N. 1956. On a new cestode from the palm squirrel, Funambulus palmarum Linn. Proceedings of the National Academy of Sciences of Allahabad, 26(Series B), 274–277.Google Scholar
  31. Kimura M. 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences of the U.S.A., 78, 454–458.CrossRefGoogle Scholar
  32. Kontrimavichus V.L., Smirnova L.V. 1991. Hymenolepis beringiensis sp. n. from the Siberian lemming (Lemmus sibiricus Kerr) and the problem of the sibling species in helminthology. In: (Eds. Krasnosohekov G.P., Roitman V.A., Sonin M.D., Chesnova L.V.). Evoljucia parazitov. Materialy I Vsesojuznogo Simpoziuma. Tol’yatti, Akademiya Nauk SSSR, pp. 90–104 (In Russian).Google Scholar
  33. Laakkonen J., Haukisalmi V., Niemimma J., Henttonen H. 2001. Parasite diversity of Norweigian lemmings (Lemmus lemmus). Zoological Journal, 253, 549–553. DOI: 10.1017/S0952836 901000504.CrossRefGoogle Scholar
  34. Librado P., Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.PubMedCrossRefGoogle Scholar
  35. Linstow O. 1901. Taenia horrida, Tetrabothrium macrocephalum, und Heterakis distans. Archiv für Naturgeschichte, 67, 1–10.Google Scholar
  36. Makarikov A.A. 2008. Cestodes of the family Hymenolepididae Perrier, 1897 in rodents from the Asian part of Russia. PhD Thesis, Rossiiskaja Akademija Nauk Sibirskoe Otdelenie Institut Sistematiki I Ekologii Zhivotnikh, Novosibirsk, Russia.Google Scholar
  37. Makarikov A.A., Galbreath K.E., Hoberg E.P. 2013. Diversity at the Holarctic nexus: species of Arostrilepis (Eucestoda: Hymenolepididae) in arvicoline rodents (Cricetidae: Arvicolinae) from greater Beringia. Zootaxa, 3608, 401–439.CrossRefGoogle Scholar
  38. Makarikov A.A., Gardner S.L., Hoberg E.P. 2012. New species of Arostrilepis (Eucestoda: Hymenolepididae) in members of Cricetidae and Geomyidae (Rodentia) from the Western Nearctic. Journal of Parasitology, 98, 617–626. DOI: 10.1645/GE-2943.1.PubMedCrossRefGoogle Scholar
  39. Makarikov A.A., Gulyaev V.D., Kontrimavichus V.L. 2011. A redescription of Arostrilepis horrida (Linstow, 1901) and descriptions of two new species from Palaearctic microtine rodents, Arostrilepis macrocirrosa sp. n. and A. tenuicirrosa sp. n. (Cyclophyllidea: Hymenolepididae). Folia Parasitologica, 58, 108–120.PubMedGoogle Scholar
  40. Makarikov A.A., Kontrimavichus V.L. 2011. A redescription of Arostrilepis beringiensis (Kontrimavichus et Smirnova, 1991) and descriptions of two new species from Palearctic microtine rodents, Arostrilepis intermedia sp. n. and A. janickii sp. n. (Cestoda: Hymenolepididae). Folia Parasitologica, 58, 289–301.PubMedGoogle Scholar
  41. Mas-Coma S., Tenora F. 1997. Proposal of Arostrilepis n. gen. (Cestoda: Hymenolepidae). Research and Reviews in Parasitology, 57, 93–101.Google Scholar
  42. Mas-Coma S., Tenora F., Gallego J. 1980. Consideraciones sobre los Hymenolepídidos inermes de Roedores, con especial referencia a la problemática entorno a Hymenolepis diminuta. Circular Farmacéutica, 38, 137–152.Google Scholar
  43. Merkusheva I.V., Bobkova A.F. 1981. [Helminths of domesticated and wild animals in Belarus.] Nauka i Tehnika, Minsk, 120 pp. (In Russian).Google Scholar
  44. Mozgovoi A.A., Semenova M.K., Mishchenko R.I., Tsibatova S.W. 1966. [Helminthofauna of rodents and leporids of Karelia]. Trudy Gel’mintologicheskoi Laboratorii, 17, 95–103 (In Russian).Google Scholar
  45. Murai E., Tenora F. 1973. Hymenolepis horrida (Linstow, 1901) from Microtinae in Hungary. Parasitologia Hungarica, 6, 111–116.Google Scholar
  46. Okamoto M., Agatsuma T., Kurosawa T., Ito A. 1997. Phylogenetic relationships of three hymenolepidid species inferred from nuclear ribosomal and mitochondrial DNA sequences. Parasitology, 115, 661–666.PubMedCrossRefGoogle Scholar
  47. Padgett K.A., Nadler S.A., Munson L., Sacks B., Boyce W.M. 2005. Systematics of Mesocestoides (Cestoda: Mesocestoididae): evaluation of molecular and morphological variation among isolates. Journal of Parasitology, 91, 1435–1443. DOI: 10.1645/GE-3461.1.PubMedCrossRefGoogle Scholar
  48. Paterson A.M., Banks J. 2001. Analytical approaches to measuring cospeciation of host and parasites: through a glass, darkly. International Journal for Parasitology, 31, 1012–1022. DOI: 10.1016/S0020-7519(01)00199-0.PubMedCrossRefGoogle Scholar
  49. Posada D., Crandall K.A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics, 14, 817–818.PubMedCrossRefGoogle Scholar
  50. Prokopic J., Mahnert V. 1970. Uber Helminthen der Kleinsauger (Insectivora, Rodentia) Tirols (Österreichs). Berichte des Naturwissenschaftlich-medizinischen Vereins in Innsbruck, 58, 143–154.Google Scholar
  51. Rambaut A., Drummond A.J. 2007. Tracer v1.5. Available from Scholar
  52. Rausch R.L. 1952. Studies on the helminth fauna of Alaska. XI. Helminth parasites of microtine rodents — taxonomic considerations. Journal of Parasitology, 38, 415–444.PubMedCrossRefGoogle Scholar
  53. Rybicka K. 1959. Tapeworms of forest micromammals (Rodentia and Insectivora) from Kampinos Wilderness. Acta Parasitologica Polonica, 7, 393–421.Google Scholar
  54. Ryzhikov K.M., Gvozdev E.V., Tokobaev M.M., Shaldybin L.S., Matzaberidze G.V., Merkusheva I.V., Nadtochii E.V., Khohlova I.G., Sharpilo L.D. 1978. [Keys to the helminths of the rodent fauna of the USSR. Cestodes and trematodes.] Izdatel’stvo Nauka, Moskva, 232 pp. (In Russian).Google Scholar
  55. Santalla F., Casanova J.C., Durand P., Vaucher C., Renaud F., Feliu C. 2002. Morphometric and genetic variability of Rodentolepis asymmetrica (Hymenolepididae) from the Pyrenean mountains. Journal of Parasitology, 88, 983–988. DOI: 10.1645/0022-3395(2002)088[0983:MAGVOR]2.0.CO;2.PubMedGoogle Scholar
  56. Schiller E.L. 1952. Studies on the helminth fauna of Alaska. X. Morphological variation in Hymenolepis horrida (von Linstow, 1901) (Cestoda: Hymenolepididae). Journal of Parasitology, 38, 554–568.PubMedCrossRefGoogle Scholar
  57. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739. DOI: 10.1093/molbev/msr121.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Tenora F., Henttonen H., Haukisalmi V. 1983. On helminths of rodents in Finland. Annales Zoologici Fennici, 20, 37–45.Google Scholar
  59. Tenora F., Henttonen H., Haukisalmi V. 1985. New findings of helminths in rodents in Finland. Folia Parasitologica, 32, 33.Google Scholar
  60. Tenora F., Wiger R., Baruš V. 1979. Seasonal and annual variations in the prevalence of helminths in a cyclic population of Clethrionomys glareolus. Holarctic Ecology, 2, 176–181.Google Scholar
  61. Voge M. 1952. Variation in some unarmed Hymenolepididae (Cestoda) from rodents. University of California Publications in Zoology, 57, 1–52.Google Scholar
  62. Wickström L.M., Haukisalmi V., Varis S., Hantula J., Fedorov V.B., Henttonen H. 2003. Phylogeography of the circumpolar Paranoplocephala arctica species complex (Cestoda: Anoplocephalidae) parasitizing collared lemmings (Dicrostonyx spp.). Molecular Ecology, 12, 3359–3371. DOI: 10.1046/j.1365-294X.2003.01985.x.PubMedCrossRefGoogle Scholar
  63. Żarnowski E. 1955. [Parasitic worms of forest small mammals (Rodentia and Insectivora) near Pulawy (Lublin). I. Cestoda]. Acta Parasitologica Polonica, 3, 279–368 (In Polish).Google Scholar
  64. Zwickl D.J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. Thesis, University of Texas at Austin, USA.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Kurt E. Galbreath
    • 1
  • Kristina Ragaliauskaite
    • 2
  • Leonas Kontrimavichus
    • 2
  • Arseny A. Makarikov
    • 3
  • Eric P. Hoberg
    • 4
  1. 1.Department of BiologyNorthern Michigan UniversityMarquetteUSA
  2. 2.Institute of Ecology of Nature Research CentreVilniusLithuania
  3. 3.Institute of Systematics and Ecology of Animals, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.United States National Parasite Collection, Animal Parasitic Disease Laboratory, USDAAgricultural Research ServiceBeltsvilleUSA

Personalised recommendations