Acta Parasitologica

, Volume 58, Issue 4, pp 519–526 | Cite as

Trichomonas vaginalis acidic phospholipase A2: isolation and partial amino acid sequence

  • Brenda L. Escobedo-Guajardo
  • Francisco González-Salazar
  • Rebeca Palacios-Corona
  • Víctor M. Torres de la Cruz
  • Mario Morales-Vallarta
  • Benito D. Mata-Cárdenas
  • Jesús N. Garza-González
  • Gerardo Rivera-Silva
  • Javier Vargas-Villarreal
Original Paper

Abstract

Sexually transmitted diseases are a major cause of acute disease worldwide, and trichomoniasis is the most common and curable disease, generating more than 170 million cases annually worldwide. Trichomonas vaginalis is the causal agent of trichomoniasis and has the ability to destroy in vitro cell monolayers of the vaginal mucosa, where the phospholipases A2 (PLA2) have been reported as potential virulence factors. These enzymes have been partially characterized from the subcellular fraction S30 of pathogenic T. vaginalis strains. The main objective of this study was to purify a phospholipase A2 from T. vaginalis, make a partial characterization, obtain a partial amino acid sequence, and determine its enzymatic participation as hemolytic factor causing lysis of erythrocytes. Trichomonas S30, RF30 and UFF30 sub-fractions from GT-15 strain have the capacity to hydrolyze [2-14C-PA]-PC at pH 6.0. Proteins from the UFF30 sub-fraction were separated by affinity chromatography into two eluted fractions with detectable PLA A2 activity. The EDTA-eluted fraction was analyzed by HPLC using on-line HPLC-tandem mass spectrometry and two protein peaks were observed at 8.2 and 13 kDa. Peptide sequences were identified from the proteins present in the eluted EDTA UFF30 fraction; bioinformatic analysis using Protein Link Global Server charged with T. vaginalis protein database suggests that eluted peptides correspond a putative ubiquitin protein in the 8.2 kDa fraction and a phospholipase preserved in the 13 kDa fraction. The EDTA-eluted fraction hydrolyzed [2-14C-PA]-PC lyses erythrocytes from Sprague-Dawley in a time and dose-dependent manner. The acidic hemolytic activity decreased by 84% with the addition of 100 μM of Rosenthal’s inhibitor.

Keywords

Trichomonas vaginalis amino acid sequence isolation phospholipases phospholipases A2 virulence factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbour S.E., Marciano-Cabral F. 2001. Naegleria fowleri amoebae express a membrane-associated calcium-independent phospholipase A(2). Biochimica et Biophysica Acta, 1530, 123–33.PubMedCrossRefGoogle Scholar
  2. Cohn S.E., Clark R.A. 2003. Sexually transmitted diseases, HIV, and AIDS in women. Medical Clinics of North America, 87, 971–95.PubMedCrossRefGoogle Scholar
  3. Demirezen S. 2001. Phagocytosis of erythrocytes by Trichomonas vaginalis: examination of a cervicovaginal smear. Diagnostic Cytopathology, 24, 435.PubMedCrossRefGoogle Scholar
  4. Diamond L.S., Harlow D.R., Cunnick C.C. 1978. A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Transactions of the Royal Society of Tropical Medicine and Hygiene, 72, 431–432.PubMedCrossRefGoogle Scholar
  5. Gilbert R.O., Elia G., Beach D.H., Klaessig S., Singh B.N. 2000. Cytopathogenic effect of Trichomonas vaginalis on human vaginal epithelial cells cultured in vitro. Infection and Immunity, 68, 4200–6.PubMedCrossRefPubMedCentralGoogle Scholar
  6. González-Garza M.T., Castro-Garza J., Cruz-Vega D.E., Vargas-Villarreal J., Carranza-Rosales P., Mata-Cárdenas B.D., Siller-Campos L., Said-Fernández S. 2000. Entamoeba histolytica: diminution of erythrophagocytosis, phospholipase A(2), and hemolytic activities is related to virulence impairment in longterm axenic cultures. Experimental Parasitology, 96, 116–119.PubMedCrossRefGoogle Scholar
  7. González-Robles A., Lázaro-Haller A., Espinosa-Cantellano M., Anaya-Velázquez F., Martínez-Palomo A. 1995. Trichomonas vaginalis: ultrastructural bases of the cytopathic effect. Journal of Eukaryotic Microbiology, 42, 641–651.PubMedCrossRefGoogle Scholar
  8. Gülmezoglu A.M., Forna F. 2000. Interventions for treating trichomoniasis in women. Cochrane Database of Systematic Reviews, 2: CD000218.PubMedGoogle Scholar
  9. Heath J.P. 1981. Behaviour and pathogenicity of Trichomonas vaginalis in epithelial cell cultures: a study by light and scanning electron microscopy. British Journal of Venereal Diseases, 57106–17.Google Scholar
  10. Keeling P.J., Doolittle W.F. 1995. Concerted evolution in protists: recent homogenization of a polyubiquitin gene in Trichomonas vaginalis. Journal of Molecular Evolution, 41, 556–62.PubMedCrossRefGoogle Scholar
  11. Long-Krug S.A., Fischer K.J., Hysmith R.M., Ravdin J.I. 1985. Phospholipase A enzymes of Entamoeba histolytica: description and subcellular localization. Journal of Infectious Diseases, 152, 536–541.PubMedCrossRefGoogle Scholar
  12. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMedGoogle Scholar
  13. Lubick K.J., Burgess D.E. 2004. Purification and analysis of a phospholipase A2-like lytic factor of Trichomonas vaginalis. Infection and Immunity, 72, 1284–1290.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Padilla-Vaca F., Anaya-Velázquez F. 1997. Biochemical properties of a neuraminidase of Trichomonas vaginalis. Journal of Parasitology, 83, 1001–1006.PubMedCrossRefGoogle Scholar
  15. Rendón-Maldonado J.G., Espinosa-Cantellano M., González-Robles A., Martínez-Palomo A. 1998. Trichomonas vaginalis: in vitro phagocytosis of lactobacilli, vaginal epithelial cells, leukocytes, and erythrocytes. Experimental Parasitology, 89, 241–250.PubMedCrossRefGoogle Scholar
  16. Said-Fernández S., Vargas-Villarreal J., Castro-Garza J., Mata-Cárdenas B.D., Navarro-Marmolejo L., Lozano-Garza G., Martínez-Rodríguez H. 1988. PEHPS medium: an alternative for axenic cultivation of Entamoeba histolytica and E. invadens. Transactions of the Royal Society of Tropical Medicine and Hygiene, 82, 249–253.PubMedCrossRefGoogle Scholar
  17. Skispky J.P., Barclay M. 1969. Thin-layer chromatography of lipids. In: Methods in Enzymology, Lowestein J.M. 14 ed. Academic Press, New York, 530–599.Google Scholar
  18. Sutton M., Sternberg M., Koumans E.H., McQuillan G., Berman S., Markowitz L. 2007. The prevalence of Trichomonas vaginalis infection among reproductive-age women in the United States, 2001–2004. Clinical Infectious Diseases, 45, 1319–1326.PubMedCrossRefGoogle Scholar
  19. Vargas-Villarreal J., Martín-Polo J.J., Reinaud E., Alagón A.C. 1991. A new affinity adsorbent for the purification of phospholipases A1 and A2 from animal venoms. Toxicon, 29, 119–24.PubMedCrossRefGoogle Scholar
  20. Vargas-Villarreal J., Martínez-Rodríguez H.G., Castro-Garza J., Mata-Cárdenas B.D., González-Garza M.T., Said-Fernández S. 1995. Identification of Entamoeba histolytica intracellular phospholipase A and lysophospholipase L1 activities. Parasitology Research, 81, 320–323.PubMedCrossRefGoogle Scholar
  21. Vargas-Villarreal J., Olvera-Rodríguez A., Mata-Cárdenas B.D., Martínez-Rodríguez H., Said-Fernández S., Alagón-Cano A. 1998. Isolation of an Entamoeba histolytica intracellular alkaline phospholipase A2. Parasitology Research, 84, 310–314.PubMedCrossRefGoogle Scholar
  22. Vargas-Villarreal J., Mata-Cárdenas B.D., González-Salazar F., Lozano-Garza H.G., Cortes-Gutierrez E.I., Palacios-Corona R., Martínez-Rodríguez H.G., Ramírez-Bon E., Said-Fernández S. 2003. Trichomonas vaginalis: identification of a phospholipase A-dependent hemolytic activity in a vesicular subcellular fraction. Journal of Parasitology, 89, 105–12.PubMedCrossRefGoogle Scholar
  23. Vargas-Villarreal J., Mata-Cárdenas B.D., Palacios-Corona R., Gonzalez-Salazar F., Cortes-Gutierrez E.I., Martinez-Rodriguez H.G., Said-Fernández S. 2005. Trichomonas vaginalis: identification of soluble and membrane-associated phospholipase A1 and A2 activities with direct and indirect hemolytic effects. Journal of Parasitology 91, 5–11.PubMedCrossRefGoogle Scholar
  24. Van den Bosch H. 1980. Intracellular phospholipases A. Biochimica et Biophysica Acta, 604, 191–246.PubMedGoogle Scholar
  25. Wainszelbaum M., Isola, E., Wilkowsky S., Cannata J.J., Florin-Christensen J., Florin-Christensen M. 2001. Lysosomal phospholipase A1 in Trypanosoma cruzi: an enzyme with a possible role in the pathogenesis of Chagas’ disease. Biochemical Journal, 355, 765–70.PubMedPubMedCentralGoogle Scholar
  26. WHO — World Health Organization 2010. [homepage on the Internet]. [accessed 30 April 2011]. Available from: http://whqlibdoc.who.int/hq/2001/WHO_HIV_AIDS_2001.02.pdf.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Brenda L. Escobedo-Guajardo
    • 1
    • 2
  • Francisco González-Salazar
    • 1
    • 3
  • Rebeca Palacios-Corona
    • 1
  • Víctor M. Torres de la Cruz
    • 1
  • Mario Morales-Vallarta
    • 2
  • Benito D. Mata-Cárdenas
    • 4
  • Jesús N. Garza-González
    • 1
  • Gerardo Rivera-Silva
    • 3
  • Javier Vargas-Villarreal
    • 1
  1. 1.División de Biología Celular y Molecular, Centro de Investigación Biomédica del NoresteInstituto Mexicano del Seguro Social. Administración de Correo No. 4Colonia Independencia, Monterrey Nuevo LeónMéxico
  2. 2.Departamento de Biología Celular y Genética, Facultad de Ciencias BiológicasUniversidad Autónoma de Nuevo León San Nicolás de los GarzaNuevo LeónMéxico
  3. 3.Departamento de Ciencias Básicas, División de Ciencias de la SaludUniversidad de MonterreyNuevo LeónMéxico
  4. 4.Facultad de Ciencias QuímicasUniversidad Autónoma de Nuevo LeónSan Nicolás de los Garza, Nuevo LeónMéxico

Personalised recommendations