Acta Parasitologica

, Volume 58, Issue 4, pp 453–462 | Cite as

Fasciola hepatica — the pilot study of in vitro assessing immune response against native and recombinant antigens of the fluke

  • Piotr Bąska
  • Anna Zawistowska-Deniziak
  • Anna M. Zdziarska
  • Katarzyna Wasyl
  • Marcin Wiśniewski
  • Anna Cywińska
  • Maciej Klockiewicz
  • Kamil Januszkiewicz
  • Halina Wędrychowicz
Original Paper
  • 158 Downloads

Abstract

Fasciola hepatica is a liver fluke that infects 2.4 million of people and causes great economical loss in animal production. To date a 100% effective vaccine has not been developed and the disease is controlled by drug therapy. Great efforts are put into development of effective vaccine against parasite what is difficult since Fasciola spp. (like other helmints) during evolutionary process has developed sophisticated and efficient methods to evade immune response. During preliminary experiments it is convenient to use cell lines which are relatively cheap and allow for reproducible comparison of results between laboratories. We stimulated BOMA (bovine monocyte/macrophage cell line) and BOMAC (bovine macrophage cell line) with native or recombinant antigens of Fasciola hepatica and assessed IFN-γ, IL-4 and TNF-α level upon stimulation. We observed diminished secretion of proinflammatory TNF-α in LPS activated BOMA cells stimulated with Excretory/Secretory products of adult fluke (Fh-ES). We also observed greater changes in gene expression in LPS activated BOMA cells than in non activated BOMA cells upon stimulation using Fh-ES. The results show possibility of using cell lines for in vitro research of bovine immune response against liver fluke, although this model still requires validation and further characterization.

Keywords

Fasciola hepatica antigens immune response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aida Y., Pabst M.J. 1990. Removal of endotoxin from protein solutions by phase separation using Triton X-114. Journal of Immunological Methods, 14, 191–195.CrossRefGoogle Scholar
  2. Bąska P., Norbury L.J., Wiśniewski M., Januszkiewicz K., Wędrychowicz H. 2013a. Excretory/secretory products of Fasciola hepatica but not recombinant phosphoglycerate kinase induce death of human hepatocyte cells. Acta Parasitologica, 58, 215–217. DOI: 10.2478/s11686-013-0126-x.PubMedCrossRefGoogle Scholar
  3. Bąska P., Wiśniewski M., Krzyżowska M., Długosz E., Zygner W., Górski P., Wędrychowicz H. 2013b. Molecular cloning and characterisation of in vitro immune response against astacinlike metalloprotease Ace-MTP-2 from Ancylostoma ceylanicum. Experimental Parasitology, 133, 472–482. DOI: 10.1016/j.exppara.2013.01.006.PubMedCrossRefGoogle Scholar
  4. Clery D.G., Mulcahy G 1998. Lymphocyte and cytokine responses of young cattle during primary infection with Fasciola hepatica. Research in Veterinary Science, 65,169–171.PubMedCrossRefGoogle Scholar
  5. De Maere V., Vercauteren I., Geldhof P., Gevaert K., Vercruysse J., Claerebout E. 2005. Molecular analysis of astacin-like metalloproteases of Ostertagia ostertagi. Parasitology, 130, 89–98.PubMedCrossRefGoogle Scholar
  6. Donnelly S., O’Neill S.M., Sekiya M., Mulcahy G., Dalton J.P. 2005. Thioredoxin peroxidase secreted by Fasciola hepatica induces the alternative activation of macrophages. Infection and Immunity, 73, 166–173.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Donofrio G., Cavirani S., van Santen V., Flammini C.F. 2005. Potential secondary pathogenic role for bovine herpesvirus 4. Journal of Clinical Microbiology, 43, 3421–3426.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Falcón C., Carranza F., Martínez F.F., Knubel C.P., Masih D.T., Motrán C.C., Cervi L. 2010. Excretory-secretory products (ESP) from Fasciola hepatica induce tolerogenic properties in myeloid dendritic cells. Veterinary Immunology Immunopathology, 15, 36–46. DOI: 10.1016/j.vetimm.2010.04.007.CrossRefGoogle Scholar
  9. Flynn R.J., Mulcahy G. 2008. Possible role for Toll-like receptors in interaction of Fasciola hepatica excretory/secretory products with bovine macrophages. Infection and Immunity, 76, 678–684.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Guasconi L., Serradell M.C., Garro A.P., Iacobelli L., Masih D.T. 2011. C-type lectins on macrophages participate in the immunomodulatory response to Fasciola hepatica products. Immunology, 133, 386–396. DOI: 10.1111/j.1365-2567.2011.03449.x.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Guasconi L., Serradell M.C., Masih D.T. 2012. Fasciola hepatica products induce apoptosis of peritoneal macrophages. Veterinary Immunology and Immunopathology, 148, 359–363. DOI: 10.1016/j.vetimm.2012.06.022.PubMedCrossRefGoogle Scholar
  12. Jaros S., Jaros D., Wesolowska A., Zygner W., Wedrychowicz H. 2010. Blocking Fasciola hepatica’s energy metabolism — a pilot study of vaccine potential of a novel gene — phosphoglycerate kinase. Veterinary Parasitology, 172, 229–237. DOI: 10.1016/j.vetpar.2010.05.008.PubMedCrossRefGoogle Scholar
  13. Jolly A., Colavecchia S.B., Fernández B., Fernández E., Mundo S.L. 2011. Antibodies Induced by Lipoarabinomannan in Bovines: Characterization and Effects on the Interaction between Mycobacterium Avium Subsp. paratuberculosis and Macrophages In Vitro. Veterinary Medicine International, 258479. DOI: 10.4061/2011/258479.Google Scholar
  14. Lane G. 1998. Anthelmintic resistance. Veterinary Record, 143, 232.Google Scholar
  15. Loukas A., Bethony J.M., Mendez S., Fujiwara R.T., Goud G.N., Ranjit N., Zhan B., Jones K., Bottazzi M.E., Hotez P.J. 2005. Vaccination with recombinant aspartic hemoglobinase reduces parasite load and blood loss after hookworm infection in dogs. PLoS Medicine. 2, e295.PubMedCrossRefPubMedCentralGoogle Scholar
  16. McManus D.P., Dalton J.P. 2006. Vaccines against the zoonotic trematodes Schistosoma japonicum, Fasciola hepatica and Fasciola gigantica. Parasitology, 133 Suppl., 43–61.CrossRefGoogle Scholar
  17. McVeigh P., Maule A.G., Dalton J.P., Robinson M.W. 2012. Fasciola hepatica virulence-associated cysteine peptidases: a systems biology perspective. Microbes and Infection, 14, 301–310. DOI: 10.1016/j.micinf.2011.11.012.PubMedCrossRefGoogle Scholar
  18. Moll L., Gaasenbeek C.P.H., Vellema P., Borgsteede H.H.M. 2000. Resistance of Fasciola hepatica against triclabendazole in cattle and sheep in The Netherlands. Veterinary Parasitology, 91, 153–158.PubMedCrossRefGoogle Scholar
  19. Norbury L.J., Beckham S., Pike R.N., Grams R., Spithill T.W., Fecondo J.V., Smooker P.M. 2011 Adult and juvenile Fasciola cathepsin L proteases: different enzymes for different roles. Biochimie, 93, 604–611. DOI: 10.1016/j.biochi.2010.12.004.PubMedCrossRefGoogle Scholar
  20. Norbury L.J., Januszkiewicz K., Smooker P. M. 2012. Fasciola: Parasite Biology, Disease and Control. In: (Ed. G.S. Erzinger) Parasites: Ecology, Diseases and Management. Nova Science Publishers, New York, 103–166.Google Scholar
  21. Overend D.J, Bowen F.L. 1995. Resistance of Fasciola hepatica to triclabendazole. Australian Veterinary Journal, 72, 275–276.PubMedCrossRefGoogle Scholar
  22. Pearson M.S., Bethony J.M., Pickering D.A., de Oliveira L.M., Jariwala A., Santiago H., Miles A.P., Zhan B., Jiang D., Ranjit N., Mulvenna J., Tribolet L., Plieskatt J., Smith T., Bottazzi M.E., Jones K., Keegan B., Hotez P.J., Loukas A. 2009. An enzymatically inactivated hemoglobinase from Necator americanus induces neutralizing antibodies against multiple hookworm species and protects dogs against heterologous hookworm infection. FASEB Journal, 23, 3007–3019. DOI: 10.1096/fj.09-131433.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Pearson M.S., Pickering D.A., Tribolet L., Cooper L., Mulvenna J., Oliveira L.M., Bethony J.M,. Hotez P.J., Loukas A. 2010. Neutralizing antibodies to the hookworm hemoglobinase Na-APR-1: implications for a multivalent vaccine against hookworm infection and schistosomiasis. Journal of Infectious Diseases, 15,201(10), 1561–1569. DOI: 10.1086/651953.PubMedCrossRefGoogle Scholar
  24. Ranjit N., Zhan B., Hamilton B., Stenzel D., Lowther J., Pearson M., Gorman J., Hotez P., Loukas A. 2009. Proteolytic degradation of hemoglobin in the intestine of the human hookworm Necator americanus. Journal of Infectious Diseases, 199, 904–912.PubMedCrossRefGoogle Scholar
  25. Rola M., Materniak M., Pluta A., Kuzmak J. 2011. DNA microarray gene expression profile of bovine macrophages cell line (BoMac) after infection with Bovine Immunodeficiency Virus or Bovine Foamy Virus. Retrovirology, 8(Suppl. 1), A22. DOI: 10.1186/1742-4690-8-S1-A22.CrossRefPubMedCentralGoogle Scholar
  26. Salazar-Calderón M., Martín-Alonso J.M., Ruiz de Eguino A.D., Casais R., Marin M.S., Parra F. 2000. Fasciola hepatica: Heterologous expression and functional characterization of Thioredoxin Peroxidase. Experimental Parasitology, 95, 63–70.PubMedCrossRefGoogle Scholar
  27. Schweizer G., Braun U., Deplazes P., Torgerson P.R. 2005. Estimating the financial losses due to bovine fasciolosis in Switzerland. Veterinary Records, 157, 188–193.Google Scholar
  28. Serradell M.C., Guasconi L., Masih D.T. 2009. Involvement of a mitochondrial pathway and key role of hydrogen peroxide during eosinophil apoptosis induced by excretory-secretory products from Fasciola hepatica. Molecular and Biochemical Parasitology,163, 95–106. DOI: 10.1016/j.molbiopara.2008.10.005.PubMedCrossRefGoogle Scholar
  29. Shiels B.R., McKellar S., Katzer F., Lyons K., Kinnaird J., Ward C., Wastling J.M., Swan D. 2004. A Theileria annulata DNA binding protein localized to the host cell nucleus alters the phenotype of a bovine macrophage cell line. Eukaryotic Cell, 3, 495–505.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Sreekrishna K., Potenz R.H., Cruze J.A., McCombie W.R., Parker K.A,. Nelles L., Mazzaferro P.K., Holden K.A., Harrison R.G., Wood P.J, et al. 1988. High level expression of heterologous proteins in methylotrophic yeast Pichia pastoris. Journal of Basic Microbiology. 28, 265–278.PubMedCrossRefGoogle Scholar
  31. Stabel J.R., Stabel T.J. 1995. Immortalization and characterization of bovine peritoneal macrophages transfected with SV40 plasmid DNA. Veterinary Immunology and Immunopathology, 45, 211–220.PubMedCrossRefGoogle Scholar
  32. van Riet E., Hartgers F.C., Yazdanbakhsh M. 2007. Chronic helminth infections induce immunomodulation: consequences and mechanisms. Immunobiology, 212, 475–490. DOI: 10.1016/j.imbio.2007.03.009PubMedCrossRefGoogle Scholar
  33. Wasyl K., Zawistowska-Deniziak A., Bąska P., Wędrychowicz H., Wiśniewski M. 2013. Molecular cloning and expression of the cDNA sequence encoding a novel aspartic protease from Uncinaria stenocephala. Experimental Parasitology, 134, 220–227. DOI: 10.1016/j.exppara.2013.03.013.PubMedCrossRefGoogle Scholar
  34. Weaver C.T., Harrington L.E., Mangan P.R., Gavrieli M., Murphy KM. 2006. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity, 24, 677–688. Review.PubMedCrossRefGoogle Scholar
  35. Wędrychowicz H., Klockiewicz M. 1994. Protective and diagnostic molecules of Fasciola hepatica. Acta Parasitologica, 39, 173–178.Google Scholar
  36. Williamson A.L., Brindley P.J., Loukas A. 2003. Hookworm cathepsin D aspartic proteases: contributing roles in the host-specific degradation of serum proteins and skin macromolecules. Parasitology, 126, 179–185.PubMedCrossRefGoogle Scholar
  37. Williamson A.L., Lecchi P., Turk B.E., Choe Y., Hotez P.J., McKerrow J.H., Cantley L.C., Sajid M., Craik C.S., Loukas A. 2004. A multi-enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding hookworms. Journal of Biological Chemistry, 279, 35950–35957.PubMedCrossRefGoogle Scholar
  38. Wilson L.R., Good R.T., Panaccio M., Wijffels G.L., Sandeman R.M., Spithill T.W. 1998. Fasciola hepatica: characterization and cloning of the major cathepsin B protease secreted by newly excysted juvenile liver fluke. Experimental Parasitology, 88,85–94.PubMedCrossRefGoogle Scholar
  39. Zawistowska-Deniziak A., Wasyl K., Norbury L.J., Wesołowska A., Bień J., Grodzik M., Wiśniewski M., Bąska P., Wędrychowicz H. 2013. Characterization and differential expression of cathepsin L3 alleles from Fasciola hepatica. Molecular and Biochemical Parasitology, 190, 27–37. DOI: 10.1016/j.molbiopara.2013.06.001.PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Piotr Bąska
    • 1
  • Anna Zawistowska-Deniziak
    • 2
  • Anna M. Zdziarska
    • 3
  • Katarzyna Wasyl
    • 3
  • Marcin Wiśniewski
    • 3
  • Anna Cywińska
    • 4
  • Maciej Klockiewicz
    • 3
  • Kamil Januszkiewicz
    • 2
  • Halina Wędrychowicz
    • 2
    • 3
  1. 1.Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Faculty of Veterinary MedicineWarsaw University of Life Sciences — SGGWWarsawPoland
  2. 2.Witold Stefański Institute of ParasitologyPolish Academy of SciencesWarsawPoland
  3. 3.Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Faculty of Veterinary MedicineWarsaw University of Life Sciences — SGGWWarsawPoland
  4. 4.Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary MedicineWarsaw University of Life Sciences — SGGWWarsawPoland

Personalised recommendations